enstazao commited on
Commit
60adfff
1 Parent(s): 1b0c585

used the wtq dataset fine tuned model

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -3,9 +3,9 @@ import pandas as pd
3
  from io import BytesIO
4
  from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering, TableQuestionAnsweringPipeline
5
 
6
- # Load the tokenizer and model directly
7
- tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wikisql-supervised")
8
- model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wikisql-supervised")
9
 
10
  # Initialize the TableQuestionAnsweringPipeline manually
11
  pipe = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
@@ -27,7 +27,6 @@ def answer_question(uploaded_file, question):
27
  answer = result['answer']
28
  return answer
29
 
30
-
31
  logo_url = "https://i.ibb.co/Brr7bPP/xflow.png"
32
  # Define the Gradio app interface
33
  iface = gr.Interface(
@@ -40,3 +39,4 @@ iface = gr.Interface(
40
 
41
  # Run the app
42
  iface.launch()
 
 
3
  from io import BytesIO
4
  from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering, TableQuestionAnsweringPipeline
5
 
6
+ # Load the tokenizer and model with "google/tapas-large-finetuned-wtq"
7
+ tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
8
+ model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
9
 
10
  # Initialize the TableQuestionAnsweringPipeline manually
11
  pipe = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
 
27
  answer = result['answer']
28
  return answer
29
 
 
30
  logo_url = "https://i.ibb.co/Brr7bPP/xflow.png"
31
  # Define the Gradio app interface
32
  iface = gr.Interface(
 
39
 
40
  # Run the app
41
  iface.launch()
42
+