nmap / llama_api.py
enotkrutoy's picture
Upload 15 files
c48ca45 verified
raw
history blame
5.12 kB
import os
import fire
from enum import Enum
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
from transformers import TextIteratorStreamer
from flask import Flask, request, jsonify
BOS, EOS = "<s>", "</s>"
E_INST = "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest cybersecurity analyst. Being a security analyst you must scrutanize the details provided to ensure it is usable for penitration testing. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
def format_to_llama_chat_style(user_instructions, history) -> str:
B_INST = f"[INST]{user_instructions}"
prompt = ""
for i, dialog in enumerate(history[:-1]):
instruction, response = dialog[0], dialog[1]
if i == 0:
instruction = f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}" + instruction
else:
prompt += BOS
prompt += f"{B_INST} {instruction.strip()} {E_INST} {response.strip()} " + EOS
new_instruction = history[-1][0].strip()
if len(history) > 1:
prompt += BOS
else:
new_instruction = f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}" + \
new_instruction
prompt += f"{B_INST} {new_instruction} {E_INST}"
return prompt
class Model_Type(Enum):
gptq = 1
ggml = 2
full_precision = 3
def get_model_type(model_name):
if "gptq" in model_name.lower():
return Model_Type.gptq
elif "ggml" in model_name.lower():
return Model_Type.ggml
else:
return Model_Type.full_precision
def create_folder_if_not_exists(folder_path):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
def initialize_gpu_model_and_tokenizer(model_name, model_type):
if model_type == Model_Type.gptq:
model = AutoGPTQForCausalLM.from_quantized(
model_name, device_map="auto", use_safetensors=True,
use_triton=False)
tokenizer = AutoTokenizer.from_pretrained(model_name)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", token=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True)
return model, tokenizer
def init_auto_model_and_tokenizer(model_name, model_type, file_name=None):
model_type = get_model_type(model_name)
if Model_Type.ggml == model_type:
models_folder = "./models"
create_folder_if_not_exists(models_folder)
file_path = hf_hub_download(
repo_id=model_name, filename=file_name, local_dir=models_folder)
model = Llama(file_path, n_ctx=4096)
tokenizer = None
else:
model, tokenizer = initialize_gpu_model_and_tokenizer(
model_name, model_type=model_type)
return model, tokenizer
app = Flask(__name__)
@app.route('/api/chatbot', methods=['POST'])
def chatbot_api():
data = request.json
user_instruction = data['user_instruction']
user_message = data['user_message']
model_name = data['model_name']
file_name = data.get('file_name')
is_chat_model = 'chat' in model_name.lower()
model_type = get_model_type(model_name)
if model_type == Model_Type.ggml:
assert file_name is not None, """
When model_name is provided for a GGML quantized model, file_name argument must also be provided."""
model, tokenizer = init_auto_model_and_tokenizer(
model_name, model_type, file_name)
if is_chat_model:
instruction = format_to_llama_chat_style(user_instruction, [[user_message, None]])
else:
instruction = user_message
history = [[user_message, None]]
response = generate_response(
model, tokenizer, instruction, history, model_type)
return jsonify({'bot_response': response})
def generate_response(model, tokenizer, instruction, history, model_type):
response = ""
kwargs = dict(temperature=0.6, top_p=0.9)
if model_type == Model_Type.ggml:
kwargs["max_tokens"] = 512
for chunk in model(prompt=instruction, stream=True, **kwargs):
token = chunk["choices"][0]["text"]
response += token
else:
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, Timeout=5)
inputs = tokenizer(instruction, return_tensors="pt").to(model.device)
kwargs["max_new_tokens"] = 512
kwargs["input_ids"] = inputs["input_ids"]
kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=kwargs)
thread.start()
for token in streamer:
response += token
return response
def run_app(port):
app.run(port=port)
if __name__ == '__main__':
fire.Fire(run_app(5000))