Spaces:
Configuration error
Configuration error
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
from basicsr.utils.download_util import load_file_from_url | |
from tqdm import tqdm | |
from modules import modelloader, devices, script_callbacks, shared | |
from modules.shared import opts, state | |
from swinir_model_arch import SwinIR as net | |
from swinir_model_arch_v2 import Swin2SR as net2 | |
from modules.upscaler import Upscaler, UpscalerData | |
device_swinir = devices.get_device_for('swinir') | |
class UpscalerSwinIR(Upscaler): | |
def __init__(self, dirname): | |
self.name = "SwinIR" | |
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ | |
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ | |
"-L_x4_GAN.pth " | |
self.model_name = "SwinIR 4x" | |
self.user_path = dirname | |
super().__init__() | |
scalers = [] | |
model_files = self.find_models(ext_filter=[".pt", ".pth"]) | |
for model in model_files: | |
if "http" in model: | |
name = self.model_name | |
else: | |
name = modelloader.friendly_name(model) | |
model_data = UpscalerData(name, model, self) | |
scalers.append(model_data) | |
self.scalers = scalers | |
def do_upscale(self, img, model_file): | |
model = self.load_model(model_file) | |
if model is None: | |
return img | |
model = model.to(device_swinir, dtype=devices.dtype) | |
img = upscale(img, model) | |
try: | |
torch.cuda.empty_cache() | |
except Exception: | |
pass | |
return img | |
def load_model(self, path, scale=4): | |
if "http" in path: | |
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") | |
filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True) | |
else: | |
filename = path | |
if filename is None or not os.path.exists(filename): | |
return None | |
if filename.endswith(".v2.pth"): | |
model = net2( | |
upscale=scale, | |
in_chans=3, | |
img_size=64, | |
window_size=8, | |
img_range=1.0, | |
depths=[6, 6, 6, 6, 6, 6], | |
embed_dim=180, | |
num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, | |
upsampler="nearest+conv", | |
resi_connection="1conv", | |
) | |
params = None | |
else: | |
model = net( | |
upscale=scale, | |
in_chans=3, | |
img_size=64, | |
window_size=8, | |
img_range=1.0, | |
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], | |
embed_dim=240, | |
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], | |
mlp_ratio=2, | |
upsampler="nearest+conv", | |
resi_connection="3conv", | |
) | |
params = "params_ema" | |
pretrained_model = torch.load(filename) | |
if params is not None: | |
model.load_state_dict(pretrained_model[params], strict=True) | |
else: | |
model.load_state_dict(pretrained_model, strict=True) | |
return model | |
def upscale( | |
img, | |
model, | |
tile=None, | |
tile_overlap=None, | |
window_size=8, | |
scale=4, | |
): | |
tile = tile or opts.SWIN_tile | |
tile_overlap = tile_overlap or opts.SWIN_tile_overlap | |
img = np.array(img) | |
img = img[:, :, ::-1] | |
img = np.moveaxis(img, 2, 0) / 255 | |
img = torch.from_numpy(img).float() | |
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype) | |
with torch.no_grad(), devices.autocast(): | |
_, _, h_old, w_old = img.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] | |
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] | |
output = inference(img, model, tile, tile_overlap, window_size, scale) | |
output = output[..., : h_old * scale, : w_old * scale] | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose( | |
output[[2, 1, 0], :, :], (1, 2, 0) | |
) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return Image.fromarray(output, "RGB") | |
def inference(img, model, tile, tile_overlap, window_size, scale): | |
# test the image tile by tile | |
b, c, h, w = img.size() | |
tile = min(tile, h, w) | |
assert tile % window_size == 0, "tile size should be a multiple of window_size" | |
sf = scale | |
stride = tile - tile_overlap | |
h_idx_list = list(range(0, h - tile, stride)) + [h - tile] | |
w_idx_list = list(range(0, w - tile, stride)) + [w - tile] | |
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img) | |
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir) | |
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: | |
for h_idx in h_idx_list: | |
if state.interrupted or state.skipped: | |
break | |
for w_idx in w_idx_list: | |
if state.interrupted or state.skipped: | |
break | |
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] | |
out_patch = model(in_patch) | |
out_patch_mask = torch.ones_like(out_patch) | |
E[ | |
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
].add_(out_patch) | |
W[ | |
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
].add_(out_patch_mask) | |
pbar.update(1) | |
output = E.div_(W) | |
return output | |
def on_ui_settings(): | |
import gradio as gr | |
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) | |
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) | |
script_callbacks.on_ui_settings(on_ui_settings) | |