Evaluators / app.py
engrtm's picture
Update app.py
c4c29da verified
import gradio as gr
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
# Load the improved TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
# Ensure model is on appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# OCR function
def extract_text(image):
if image is None:
return "Please upload an image."
image = image.convert("RGB")
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
generated_ids = model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return text.strip()
# Build Gradio interface
with gr.Blocks() as demo:
gr.Markdown("![Logo](logo.png)")
gr.Markdown("""
# Evaluator! Upgrade Your Writing Skill
""")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Handwritten Image")
output_text = gr.Textbox(label="Extracted Text", lines=8)
submit_btn = gr.Button("Extract Text")
submit_btn.click(fn=extract_text, inputs=input_image, outputs=output_text)
# Run the app
if __name__ == "__main__":
demo.launch()