engrphoenix
commited on
Commit
•
5b2548b
1
Parent(s):
6c4eed5
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,58 @@
|
|
1 |
import streamlit as st
|
2 |
-
from googletrans import Translator # Free Google Translate API
|
3 |
-
from transformers import pipeline
|
4 |
import requests
|
|
|
5 |
|
6 |
-
#
|
7 |
-
translator = Translator()
|
8 |
-
|
9 |
-
# Streamlit UI setup
|
10 |
st.set_page_config(page_title="AI-Powered Language Learning Assistant", page_icon="🧠", layout="wide")
|
11 |
|
12 |
# Header and introduction
|
13 |
st.title("🧠 AI-Powered Language Learning Assistant")
|
14 |
st.markdown("""
|
15 |
Welcome to your AI-powered language assistant! Here you can:
|
16 |
-
- Translate words or sentences to different languages
|
17 |
- Learn and practice new vocabulary
|
18 |
- Get grammar feedback.
|
19 |
""")
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Translate text using googletrans
|
29 |
-
st.subheader(f"Original Text: {text_input}")
|
30 |
-
translated_text = translator.translate(text_input, dest=language).text
|
31 |
-
|
32 |
-
# Display translation
|
33 |
-
st.markdown(f"### Translated Text to {language.upper()}:")
|
34 |
-
st.write(translated_text)
|
35 |
-
|
36 |
-
# Show pronunciation tip
|
37 |
-
st.subheader("Pronunciation Tip:")
|
38 |
-
st.write("Use Google Translate or Forvo to practice pronunciation.")
|
39 |
-
|
40 |
-
# Grammar Check (using LanguageTool)
|
41 |
-
st.subheader("Grammar Feedback:")
|
42 |
-
grammar_check_url = "https://api.languagetool.org/v2/check"
|
43 |
-
params = {
|
44 |
-
"text": text_input,
|
45 |
-
"language": "en-US"
|
46 |
}
|
47 |
-
response = requests.post(
|
48 |
if response.status_code == 200:
|
49 |
-
|
50 |
-
if result['matches']:
|
51 |
-
st.write("### Grammar Issues Found:")
|
52 |
-
for match in result['matches']:
|
53 |
-
st.write(f"- **{match['message']}** at position {match['offset']}-{match['offset']+match['length']}")
|
54 |
-
else:
|
55 |
-
st.write("No grammar issues found!")
|
56 |
else:
|
57 |
-
|
58 |
|
59 |
-
# Vocabulary
|
60 |
st.markdown("---")
|
61 |
st.header("Vocabulary Practice")
|
62 |
word_input = st.text_input("Enter a word to get its definition and synonyms", "")
|
63 |
if word_input:
|
64 |
-
# Using Hugging Face's BERT model for related words (synonyms)
|
65 |
try:
|
66 |
word_model = pipeline("fill-mask", model="bert-base-uncased") # Using BERT to predict related words
|
67 |
result = word_model(f"The synonym of {word_input} is [MASK].")
|
68 |
st.write(f"Synonyms or related words for **{word_input}**: {result}")
|
69 |
except Exception as e:
|
70 |
-
st.error("Error fetching vocabulary practice data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Footer for engagement
|
73 |
st.markdown("""
|
74 |
---
|
75 |
-
**Need more practice?** Visit [
|
76 |
""")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import requests
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Set up the page
|
|
|
|
|
|
|
6 |
st.set_page_config(page_title="AI-Powered Language Learning Assistant", page_icon="🧠", layout="wide")
|
7 |
|
8 |
# Header and introduction
|
9 |
st.title("🧠 AI-Powered Language Learning Assistant")
|
10 |
st.markdown("""
|
11 |
Welcome to your AI-powered language assistant! Here you can:
|
12 |
+
- Translate words or sentences to different languages (using LibreTranslate API)
|
13 |
- Learn and practice new vocabulary
|
14 |
- Get grammar feedback.
|
15 |
""")
|
16 |
|
17 |
+
# Translation Function (Using LibreTranslate API)
|
18 |
+
def translate_text(text, target_language):
|
19 |
+
url = "https://libretranslate.de/translate" # Free LibreTranslate API
|
20 |
+
payload = {
|
21 |
+
'q': text,
|
22 |
+
'source': 'en',
|
23 |
+
'target': target_language
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
+
response = requests.post(url, data=payload)
|
26 |
if response.status_code == 200:
|
27 |
+
return response.json()['translatedText']
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
else:
|
29 |
+
return "Translation failed."
|
30 |
|
31 |
+
# Vocabulary Practice Section using Hugging Face's BERT Model
|
32 |
st.markdown("---")
|
33 |
st.header("Vocabulary Practice")
|
34 |
word_input = st.text_input("Enter a word to get its definition and synonyms", "")
|
35 |
if word_input:
|
|
|
36 |
try:
|
37 |
word_model = pipeline("fill-mask", model="bert-base-uncased") # Using BERT to predict related words
|
38 |
result = word_model(f"The synonym of {word_input} is [MASK].")
|
39 |
st.write(f"Synonyms or related words for **{word_input}**: {result}")
|
40 |
except Exception as e:
|
41 |
+
st.error(f"Error fetching vocabulary practice data: {e}")
|
42 |
+
|
43 |
+
# Translation Section
|
44 |
+
st.markdown("---")
|
45 |
+
st.header("Translation")
|
46 |
+
text_input = st.text_input("Enter the text you want to translate", "")
|
47 |
+
language = st.selectbox("Select the language to translate to", ["es", "fr", "de", "it", "pt", "ru"])
|
48 |
+
|
49 |
+
if text_input:
|
50 |
+
translated_text = translate_text(text_input, language)
|
51 |
+
st.subheader(f"Translated Text to {language.upper()}:")
|
52 |
+
st.write(translated_text)
|
53 |
|
54 |
# Footer for engagement
|
55 |
st.markdown("""
|
56 |
---
|
57 |
+
**Need more practice?** Visit [LibreTranslate API](https://libretranslate.de/) for real-time translations and Hugging Face for more language models!
|
58 |
""")
|