urdutest / app.py
engrharis's picture
Create app.py
cc52a3a verified
raw
history blame
1.74 kB
import streamlit as st
import torch
from PIL import Image
import pytesseract
from torchvision import transforms
from model import UTRNet # Assuming the UTRNet model is defined in a file `model.py`
# Load model
def load_model():
model = UTRNet() # Initialize the model (ensure it is defined in a separate model.py)
model.load_state_dict(torch.load('saved_models/UTRNet-Large/best_norm_ED.pth'))
model.eval()
return model
# Image preprocessing
def preprocess_image(image):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((320, 320)),
])
return transform(image).unsqueeze(0)
# OCR prediction function
def predict_ocr(image, model):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
# Post-process the output to get text (This depends on how the model is structured)
return output # You might need to decode the output to actual text
# Streamlit App
def main():
st.title("Urdu Text Extraction Using UTRNet")
st.write("Upload an image containing Urdu text for OCR extraction.")
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "png", "jpeg"])
if uploaded_image is not None:
# Load and display the image
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Load the model
model = load_model()
# Get predictions
if st.button("Extract Text"):
output = predict_ocr(image, model)
st.write("Extracted Text:")
st.write(output) # You will need to process `output` to display text properly
if __name__ == "__main__":
main()