visdif / resnet50.py
englert
update app.py and resnet50.py
1f88a07
raw history blame
No virus
11.1 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
import torch.nn as nn
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
__constants__ = ["downsample"]
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
__constants__ = ["downsample"]
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None,
):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block,
layers,
zero_init_residual=False,
groups=1,
widen=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
normalize=False,
output_dim=0,
hidden_mlp=0,
nmb_prototypes=0,
eval_mode=False,
):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.eval_mode = eval_mode
self.padding = nn.ConstantPad2d(1, 0.0)
self.inplanes = width_per_group * widen
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
# change padding 3 -> 2 compared to original torchvision code because added a padding layer
num_out_filters = width_per_group * widen
self.conv1 = nn.Conv2d(
3, num_out_filters, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn1 = norm_layer(num_out_filters)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, num_out_filters, layers[0])
num_out_filters *= 2
self.layer2 = self._make_layer(
block, num_out_filters, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
)
num_out_filters *= 2
self.layer3 = self._make_layer(
block, num_out_filters, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
)
num_out_filters *= 2
self.layer4 = self._make_layer(
block, num_out_filters, layers[3], stride=2, dilate=replace_stride_with_dilation[2]
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# normalize output features
self.l2norm = normalize
# projection head
if output_dim == 0:
self.projection_head = None
elif hidden_mlp == 0:
self.projection_head = nn.Linear(num_out_filters * block.expansion, output_dim)
else:
self.projection_head = nn.Sequential(
nn.Linear(num_out_filters * block.expansion, hidden_mlp),
nn.BatchNorm1d(hidden_mlp),
nn.ReLU(inplace=True),
nn.Linear(hidden_mlp, output_dim),
)
# prototype layer
self.prototypes = None
if isinstance(nmb_prototypes, list):
self.prototypes = MultiPrototypes(output_dim, nmb_prototypes)
elif nmb_prototypes > 0:
self.prototypes = nn.Linear(output_dim, nmb_prototypes, bias=False)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
self.groups,
self.base_width,
previous_dilation,
norm_layer,
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def forward_backbone(self, x):
x = self.padding(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.eval_mode:
return x
x = self.avgpool(x)
x = torch.flatten(x, 1)
return x
def forward_head(self, x):
if self.projection_head is not None:
x = self.projection_head(x)
if self.l2norm:
x = nn.functional.normalize(x, dim=1, p=2)
if self.prototypes is not None:
return x, self.prototypes(x)
return x
def forward(self, inputs):
if not isinstance(inputs, list):
inputs = [inputs]
idx_crops = torch.cumsum(torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in inputs]),
return_counts=True,
)[1], 0)
start_idx = 0
for end_idx in idx_crops:
_out = self.forward_backbone(torch.cat(inputs[start_idx: end_idx])) # .cuda(non_blocking=True)
if start_idx == 0:
output = _out
else:
output = torch.cat((output, _out))
start_idx = end_idx
return self.forward_head(output)
class MultiPrototypes(nn.Module):
def __init__(self, output_dim, nmb_prototypes):
super(MultiPrototypes, self).__init__()
self.nmb_heads = len(nmb_prototypes)
for i, k in enumerate(nmb_prototypes):
self.add_module("prototypes" + str(i), nn.Linear(output_dim, k, bias=False))
def forward(self, x):
out = []
for i in range(self.nmb_heads):
out.append(getattr(self, "prototypes" + str(i))(x))
return out
def resnet18(**kwargs):
return ResNet(Bottleneck, [2, 2, 2, 2], **kwargs)
def resnet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
def resnet50w2(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=2, **kwargs)
def resnet50w4(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=4, **kwargs)
def resnet50w5(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], widen=5, **kwargs)