Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.utils.checkpoint import checkpoint | |
| from torch.nn.utils.parametrizations import spectral_norm, weight_norm | |
| from rvc.lib.algorithm.commons import get_padding | |
| from rvc.lib.algorithm.residuals import LRELU_SLOPE | |
| class MultiPeriodDiscriminator(torch.nn.Module): | |
| """ | |
| Multi-period discriminator. | |
| This class implements a multi-period discriminator, which is used to | |
| discriminate between real and fake audio signals. The discriminator | |
| is composed of a series of convolutional layers that are applied to | |
| the input signal at different periods. | |
| Args: | |
| use_spectral_norm (bool): Whether to use spectral normalization. | |
| Defaults to False. | |
| """ | |
| def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False): | |
| super(MultiPeriodDiscriminator, self).__init__() | |
| periods = [2, 3, 5, 7, 11, 17, 23, 37] | |
| self.checkpointing = checkpointing | |
| self.discriminators = torch.nn.ModuleList( | |
| [ | |
| DiscriminatorS( | |
| use_spectral_norm=use_spectral_norm, checkpointing=checkpointing | |
| ) | |
| ] | |
| + [ | |
| DiscriminatorP( | |
| p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing | |
| ) | |
| for p in periods | |
| ] | |
| ) | |
| def forward(self, y, y_hat): | |
| y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
| for d in self.discriminators: | |
| if self.training and self.checkpointing: | |
| def forward_discriminator(d, y, y_hat): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| return y_d_r, fmap_r, y_d_g, fmap_g | |
| y_d_r, fmap_r, y_d_g, fmap_g = checkpoint( | |
| forward_discriminator, d, y, y_hat, use_reentrant=False | |
| ) | |
| else: | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_rs.append(fmap_r) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorS(torch.nn.Module): | |
| """ | |
| Discriminator for the short-term component. | |
| This class implements a discriminator for the short-term component | |
| of the audio signal. The discriminator is composed of a series of | |
| convolutional layers that are applied to the input signal. | |
| """ | |
| def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False): | |
| super(DiscriminatorS, self).__init__() | |
| self.checkpointing = checkpointing | |
| norm_f = spectral_norm if use_spectral_norm else weight_norm | |
| self.convs = torch.nn.ModuleList( | |
| [ | |
| norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), | |
| norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
| norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
| norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
| norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
| norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ] | |
| ) | |
| self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) | |
| self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True) | |
| def forward(self, x): | |
| fmap = [] | |
| for conv in self.convs: | |
| if self.training and self.checkpointing: | |
| x = checkpoint(conv, x, use_reentrant=False) | |
| x = checkpoint(self.lrelu, x, use_reentrant=False) | |
| else: | |
| x = self.lrelu(conv(x)) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class DiscriminatorP(torch.nn.Module): | |
| """ | |
| Discriminator for the long-term component. | |
| This class implements a discriminator for the long-term component | |
| of the audio signal. The discriminator is composed of a series of | |
| convolutional layers that are applied to the input signal at a given | |
| period. | |
| Args: | |
| period (int): Period of the discriminator. | |
| kernel_size (int): Kernel size of the convolutional layers. Defaults to 5. | |
| stride (int): Stride of the convolutional layers. Defaults to 3. | |
| use_spectral_norm (bool): Whether to use spectral normalization. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| period: int, | |
| kernel_size: int = 5, | |
| stride: int = 3, | |
| use_spectral_norm: bool = False, | |
| checkpointing: bool = False, | |
| ): | |
| super(DiscriminatorP, self).__init__() | |
| self.checkpointing = checkpointing | |
| self.period = period | |
| norm_f = spectral_norm if use_spectral_norm else weight_norm | |
| in_channels = [1, 32, 128, 512, 1024] | |
| out_channels = [32, 128, 512, 1024, 1024] | |
| self.convs = torch.nn.ModuleList( | |
| [ | |
| norm_f( | |
| torch.nn.Conv2d( | |
| in_ch, | |
| out_ch, | |
| (kernel_size, 1), | |
| (stride, 1), | |
| padding=(get_padding(kernel_size, 1), 0), | |
| ) | |
| ) | |
| for in_ch, out_ch in zip(in_channels, out_channels) | |
| ] | |
| ) | |
| self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True) | |
| def forward(self, x): | |
| fmap = [] | |
| b, c, t = x.shape | |
| if t % self.period != 0: | |
| n_pad = self.period - (t % self.period) | |
| x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
| x = x.view(b, c, -1, self.period) | |
| for conv in self.convs: | |
| if self.training and self.checkpointing: | |
| x = checkpoint(conv, x, use_reentrant=False) | |
| x = checkpoint(self.lrelu, x, use_reentrant=False) | |
| else: | |
| x = self.lrelu(conv(x)) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |