case_dif / dataloader.py
Enes Bol
initial
fd4bbc8
import cv2
import glob
import torch
import numpy as np
import albumentations as albu
from pathlib import Path
from albumentations.pytorch.transforms import ToTensorV2
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
class DatasetGenerate(Dataset):
def __init__(self, img_folder, gt_folder, edge_folder, phase: str = 'train', transform=None, seed=None):
self.images = sorted(glob.glob(img_folder + '/*'))
self.gts = sorted(glob.glob(gt_folder + '/*'))
self.edges = sorted(glob.glob(edge_folder + '/*'))
self.transform = transform
train_images, val_images, train_gts, val_gts, train_edges, val_edges = train_test_split(self.images, self.gts,
self.edges,
test_size=0.05,
random_state=seed)
if phase == 'train':
self.images = train_images
self.gts = train_gts
self.edges = train_edges
elif phase == 'val':
self.images = val_images
self.gts = val_gts
self.edges = val_edges
else: # Testset
pass
def __getitem__(self, idx):
image = cv2.imread(self.images[idx])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(self.gts[idx])
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
edge = cv2.imread(self.edges[idx])
edge = cv2.cvtColor(edge, cv2.COLOR_BGR2GRAY)
if self.transform is not None:
augmented = self.transform(image=image, masks=[mask, edge])
image = augmented['image']
mask = np.expand_dims(augmented['masks'][0], axis=0) # (1, H, W)
mask = mask / 255.0
edge = np.expand_dims(augmented['masks'][1], axis=0) # (1, H, W)
edge = edge / 255.0
return image, mask, edge
def __len__(self):
return len(self.images)
class Test_DatasetGenerate(Dataset):
def __init__(self, img_folder, gt_folder=None, transform=None):
self.images = sorted(glob.glob(img_folder + '/*'))
self.gts = sorted(glob.glob(gt_folder + '/*')) if gt_folder is not None else None
self.transform = transform
def __getitem__(self, idx):
image_name = Path(self.images[idx]).stem
image = cv2.imread(self.images[idx])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size = image.shape[:2]
if self.transform is not None:
augmented = self.transform(image=image)
image = augmented['image']
if self.gts is not None:
return image, self.gts[idx], original_size, image_name
else:
return image, original_size, image_name
def __len__(self):
return len(self.images)
def get_loader(img_folder, gt_folder, edge_folder, phase: str, batch_size, shuffle,
num_workers, transform, seed=None):
if phase == 'test':
dataset = Test_DatasetGenerate(img_folder, gt_folder, transform)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
else:
dataset = DatasetGenerate(img_folder, gt_folder, edge_folder, phase, transform, seed)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers,
drop_last=True)
print(f'{phase} length : {len(dataset)}')
return data_loader
def get_train_augmentation(img_size, ver):
if ver == 1:
transforms = albu.Compose([
albu.Resize(img_size, img_size, always_apply=True),
albu.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
ToTensorV2(),
])
if ver == 2:
transforms = albu.Compose([
albu.OneOf([
albu.HorizontalFlip(),
albu.VerticalFlip(),
albu.RandomRotate90()
], p=0.5),
albu.OneOf([
albu.RandomContrast(),
albu.RandomGamma(),
albu.RandomBrightness(),
], p=0.5),
albu.OneOf([
albu.MotionBlur(blur_limit=5),
albu.MedianBlur(blur_limit=5),
albu.GaussianBlur(blur_limit=5),
albu.GaussNoise(var_limit=(5.0, 20.0)),
], p=0.5),
albu.Resize(img_size, img_size, always_apply=True),
albu.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
ToTensorV2(),
])
return transforms
def get_test_augmentation(img_size):
transforms = albu.Compose([
albu.Resize(img_size, img_size, always_apply=True),
albu.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
ToTensorV2(),
])
return transforms
def gt_to_tensor(gt):
gt = cv2.imread(gt)
gt = cv2.cvtColor(gt, cv2.COLOR_BGR2GRAY) / 255.0
gt = np.where(gt > 0.5, 1.0, 0.0)
gt = torch.tensor(gt, device='cuda', dtype=torch.float32)
gt = gt.unsqueeze(0).unsqueeze(1)
return gt