enclap / test /eval_dataset_test.py
tonyswoo's picture
Initial Commit
73baeae
from datasets import load_dataset
from transformers import AutoTokenizer
from modeling.audiobart import AudioBartForConditionalGeneration
from torch.utils.data import DataLoader
from data.collator import EncodecCollator
import numpy as np
import torch
import os
if __name__=="__main__":
model = AudioBartForConditionalGeneration.from_pretrained('bart/model')
basepath = "/data/jyk/aac_dataset/clotho/encodec/"
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large')
data_files = {"validation": "csv/valid_allcaps.csv"}
num_captions = 5
raw_dataset = load_dataset("csv", data_files=data_files)
def preprocess_eval(example):
path = example['file_path']
encodec = np.load(os.path.join(basepath, path))
if encodec.shape[0]>1022:
encodec = encodec[:1022, :]
attention_mask = np.ones(encodec.shape[0]+2).astype(np.int64)
captions = []
for i in range(1, num_captions+1):
captions.append(example['caption_'+str(i)])
return {'input_ids': encodec, 'attention_mask': attention_mask, 'captions': captions}
train_dataset = raw_dataset['validation'].map(preprocess_eval)
train_dataset.set_format('pt', columns=['input_ids', 'attention_mask'], output_all_columns=True)
# train_dataset.remove_columns('file_path', 'caption_1', 'caption_2', 'caption_3', 'caption_4', 'caption_5')
data_collator = EncodecCollator(tokenizer=tokenizer, model=model, return_tensors="pt")
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=16)
for idx, batch in enumerate(train_dataloader):
output = model.generate(**batch, max_length=100)
print(output)