Spaces:
Sleeping
Sleeping
Emirhan Gazi
commited on
Commit
•
d83a8df
1
Parent(s):
1efd675
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForSeq2SeqLM,
|
6 |
+
AutoModelForTokenClassification,
|
7 |
+
pipeline)
|
8 |
+
from transformers import Pipeline
|
9 |
+
import re
|
10 |
+
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("emirhangazi77/Turkish-T5")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("emirhangazi77/Turkish-T5")
|
13 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") # pretrained ner model
|
14 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") # pretrained ner tokenizer
|
15 |
+
ner = pipeline('ner', model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="first") #
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
device = torch.device('cpu')
|
20 |
+
|
21 |
+
class Diacritic_Pipe(Pipeline):
|
22 |
+
|
23 |
+
def __init__(self,ner,model,tokenizer):
|
24 |
+
super().__init__(model = model, tokenizer = tokenizer)
|
25 |
+
self.ner_pipe = ner
|
26 |
+
|
27 |
+
def generate_result(self,text):
|
28 |
+
prefix = "Correct diacritics for : "
|
29 |
+
postfix = " </s>"
|
30 |
+
text = prefix + text + postfix
|
31 |
+
|
32 |
+
self.tokenizer.truncation_side = "left"
|
33 |
+
batch = self.tokenizer(text, return_tensors='pt', max_length = 64, truncation = False).to(device)
|
34 |
+
result = self.model.generate(**batch, max_new_tokens = 128)
|
35 |
+
result = self.tokenizer.batch_decode(result)
|
36 |
+
|
37 |
+
return str(result[0])
|
38 |
+
def ner_predict_mapping(self,text, threshold=0.3):
|
39 |
+
result = self.ner_pipe(text)
|
40 |
+
if len(result) == 0:
|
41 |
+
return []
|
42 |
+
else:
|
43 |
+
special_words = [result["word"] for result in result if result["score"] > threshold]
|
44 |
+
special_words_ = []
|
45 |
+
for word_ in special_words:
|
46 |
+
if word_.lower()[0] == "i":
|
47 |
+
word_ = word_.replace("I","İ")
|
48 |
+
if len(word_.split()) > 1:
|
49 |
+
special_words_.extend(word_.split())
|
50 |
+
else:
|
51 |
+
special_words_.append(word_)
|
52 |
+
|
53 |
+
return special_words_
|
54 |
+
|
55 |
+
def split_text_into_n_worded_chunks(self,text, n):
|
56 |
+
words = text.split()
|
57 |
+
chunks = []
|
58 |
+
for i in range(0, len(words), n):
|
59 |
+
chunks.append(' '.join(words[i:i+n]))
|
60 |
+
last_chunk_words = len(words) % n
|
61 |
+
if last_chunk_words != 0:
|
62 |
+
chunks[-1] = ' '.join(words[-last_chunk_words:])
|
63 |
+
return chunks
|
64 |
+
|
65 |
+
def chunk_2(self,text):
|
66 |
+
chunks = self.split_text_into_n_worded_chunks(text, 2)
|
67 |
+
processed_chunks = [re.sub(r'(["q(°\[\]{}&´])\s+', r'\1',self.generate_result(chunk)) for chunk in chunks]
|
68 |
+
result = ' '.join(processed_chunks)
|
69 |
+
return result.replace("<pad>","").replace("</s>","").replace(" "," ")
|
70 |
+
|
71 |
+
def chunk_1(self,text):
|
72 |
+
chunks = self.split_text_into_n_worded_chunks(text, 1)
|
73 |
+
processed_chunks = [self.generate_result(chunk).replace(" ","") for chunk in chunks]
|
74 |
+
result = ''.join(processed_chunks)
|
75 |
+
return result.replace("<pad>"," ").replace("</s>","")
|
76 |
+
|
77 |
+
def process_text(self,text):
|
78 |
+
words = self.ner_predict_mapping(text)
|
79 |
+
two_chunk = self.chunk_2(text)
|
80 |
+
one_chunk = self.chunk_1(text)
|
81 |
+
if len(one_chunk.split()) != len(two_chunk.split()):
|
82 |
+
for word in words:
|
83 |
+
one_chunk = one_chunk.replace(word.lower().replace('i̇',"i"),word)
|
84 |
+
return one_chunk
|
85 |
+
else:
|
86 |
+
for word in words:
|
87 |
+
two_chunk = two_chunk.replace(word.lower().replace('i̇',"i"),word)
|
88 |
+
return two_chunk
|
89 |
+
|
90 |
+
def _sanitize_parameters(self, **kwargs):
|
91 |
+
preprocess_kwargs = {}
|
92 |
+
if "maybe_arg" in kwargs:
|
93 |
+
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
94 |
+
return preprocess_kwargs, {}, {}
|
95 |
+
|
96 |
+
def preprocess(self, inputs, maybe_arg=2):
|
97 |
+
return {"model_input": inputs}
|
98 |
+
|
99 |
+
def _forward(self, model_inputs):
|
100 |
+
#model_inputs == {"model_input": model_input}
|
101 |
+
outputs = self.process_text(model_inputs["model_input"])
|
102 |
+
# Maybe {"logits": Tensor(...)}
|
103 |
+
return outputs
|
104 |
+
|
105 |
+
def postprocess(self, model_outputs):
|
106 |
+
return model_outputs
|
107 |
+
|
108 |
+
import gradio as gr
|
109 |
+
|
110 |
+
diacritics = Diacritic_Pipe(ner = ner , model = model , tokenizer = tokenizer)
|
111 |
+
|
112 |
+
def fn(query):
|
113 |
+
response = diacritics(query)
|
114 |
+
return str(response)
|
115 |
+
|
116 |
+
def my_chatbot(input, history):
|
117 |
+
history = history or []
|
118 |
+
my_history = list(sum(history, ()))
|
119 |
+
my_history.append(input)
|
120 |
+
my_input = ' '.join(my_history)
|
121 |
+
output = fn(input)
|
122 |
+
history.append((input, output))
|
123 |
+
return history, history
|
124 |
+
|
125 |
+
import gradio as gr
|
126 |
+
import logging
|
127 |
+
import sys
|
128 |
+
|
129 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
130 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
131 |
+
|
132 |
+
with gr.Blocks() as demo:
|
133 |
+
gr.Markdown("""<h1><center>Diacritics on Turkish</center></h1>""")
|
134 |
+
chatbot = gr.Chatbot()
|
135 |
+
state = gr.State()
|
136 |
+
txt = gr.Textbox(show_label=False, placeholder="Ask me a question and press enter.")
|
137 |
+
txt.submit(my_chatbot, inputs=[txt, state], outputs=[chatbot, state])
|
138 |
+
|
139 |
+
demo.launch(share=True)
|