Spaces:
Runtime error
Runtime error
inital files
Browse files- .DS_Store +0 -0
- app.py +107 -0
- emirhan.tflite +0 -0
- example.jpeg +0 -0
- requirements.txt +8 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import mediapipe as mp
|
5 |
+
from mediapipe.tasks import python
|
6 |
+
from mediapipe.tasks.python import vision
|
7 |
+
from mediapipe.python._framework_bindings import image as image_module
|
8 |
+
_Image = image_module.Image
|
9 |
+
from mediapipe.python._framework_bindings import image_frame
|
10 |
+
_ImageFormat = image_frame.ImageFormat
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetInpaintPipeline, ControlNetModel
|
14 |
+
from PIL import Image
|
15 |
+
from compel import Compel
|
16 |
+
|
17 |
+
# Constants for colors
|
18 |
+
BG_COLOR = (0, 0, 0, 255) # gray with full opacity
|
19 |
+
MASK_COLOR = (255, 255, 255, 255) # white with full opacity
|
20 |
+
|
21 |
+
# Create the options that will be used for ImageSegmenter
|
22 |
+
base_options = python.BaseOptions(model_asset_path='emirhan.tflite')
|
23 |
+
options = vision.ImageSegmenterOptions(base_options=base_options,
|
24 |
+
output_category_mask=True)
|
25 |
+
|
26 |
+
# Initialize ControlNet inpainting pipeline
|
27 |
+
controlnet = ControlNetModel.from_pretrained(
|
28 |
+
'lllyasviel/control_v11p_sd15_inpaint',
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
).to("cuda")
|
31 |
+
|
32 |
+
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
33 |
+
'runwayml/stable-diffusion-v1-5',
|
34 |
+
controlnet=controlnet,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
).to("cuda")
|
37 |
+
|
38 |
+
# Function to segment hair and generate mask
|
39 |
+
def segment_hair(image):
|
40 |
+
rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
|
41 |
+
rgba_image[:, :, 3] = 0 # Set alpha channel to empty
|
42 |
+
|
43 |
+
# Create MP Image object from numpy array
|
44 |
+
mp_image = _Image(image_format=_ImageFormat.SRGBA, data=rgba_image)
|
45 |
+
|
46 |
+
# Create the image segmenter
|
47 |
+
with vision.ImageSegmenter.create_from_options(options) as segmenter:
|
48 |
+
# Retrieve the masks for the segmented image
|
49 |
+
segmentation_result = segmenter.segment(mp_image)
|
50 |
+
category_mask = segmentation_result.category_mask
|
51 |
+
|
52 |
+
# Generate solid color images for showing the output segmentation mask.
|
53 |
+
image_data = mp_image.numpy_view()
|
54 |
+
fg_image = np.zeros(image_data.shape, dtype=np.uint8)
|
55 |
+
fg_image[:] = MASK_COLOR
|
56 |
+
bg_image = np.zeros(image_data.shape, dtype=np.uint8)
|
57 |
+
bg_image[:] = BG_COLOR
|
58 |
+
|
59 |
+
condition = np.stack((category_mask.numpy_view(),) * 4, axis=-1) > 0.2
|
60 |
+
output_image = np.where(condition, fg_image, bg_image)
|
61 |
+
|
62 |
+
return output_image # Return the RGBA mask
|
63 |
+
|
64 |
+
# Function to inpaint the hair area using ControlNet
|
65 |
+
def inpaint_hair(image, prompt):
|
66 |
+
# Segment hair to get the mask
|
67 |
+
mask = segment_hair(image)
|
68 |
+
|
69 |
+
# Convert to PIL image for the inpainting pipeline
|
70 |
+
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
71 |
+
mask_pil = Image.fromarray(cv2.cvtColor(mask, cv2.COLOR_RGBA2RGB))
|
72 |
+
|
73 |
+
# Prepare the inpainting condition
|
74 |
+
image_np = np.array(image_pil).astype(np.float32) / 255.0
|
75 |
+
mask_np = np.array(mask_pil.convert("L")).astype(np.float32) / 255.0
|
76 |
+
image_np[mask_np > 0.5] = -1.0 # Set as masked pixel
|
77 |
+
inpaint_condition = torch.from_numpy(np.expand_dims(image_np, 0).transpose(0, 3, 1, 2)).to("cuda")
|
78 |
+
|
79 |
+
# Generate inpainted image
|
80 |
+
generator = torch.Generator("cuda").manual_seed(42)
|
81 |
+
output = pipe(
|
82 |
+
prompt=prompt,
|
83 |
+
image=image_pil,
|
84 |
+
mask_image=mask_pil,
|
85 |
+
control_image=inpaint_condition,
|
86 |
+
num_inference_steps=50,
|
87 |
+
guidance_scale=7.5,
|
88 |
+
generator=generator
|
89 |
+
).images[0]
|
90 |
+
|
91 |
+
return np.array(output)
|
92 |
+
|
93 |
+
# Gradio interface
|
94 |
+
iface = gr.Interface(
|
95 |
+
fn=inpaint_hair,
|
96 |
+
inputs=[
|
97 |
+
gr.Image(type="numpy"),
|
98 |
+
gr.Textbox(label="Prompt", placeholder="Describe the desired inpainting result...")
|
99 |
+
],
|
100 |
+
outputs=gr.Image(type="numpy"),
|
101 |
+
title="Hair Inpainting with ControlNet",
|
102 |
+
description="Upload an image, and provide a prompt to inpaint the hair area using ControlNet.",
|
103 |
+
examples=[["example.jpeg", "dreadlocks"]]
|
104 |
+
)
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
iface.launch()
|
emirhan.tflite
ADDED
Binary file (781 kB). View file
|
|
example.jpeg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless
|
2 |
+
mediapipe
|
3 |
+
numpy
|
4 |
+
Pillow
|
5 |
+
torch
|
6 |
+
diffusers
|
7 |
+
transformers
|
8 |
+
compel
|