|
import gradio as gr |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
import soundfile as sf |
|
import numpy as np |
|
|
|
|
|
model_name = "microsoft/speecht5_tts" |
|
processor = SpeechT5Processor.from_pretrained(model_name) |
|
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr") |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
def text_to_speech(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
speech_numpy = speech.numpy() |
|
return (16000, speech_numpy) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=text_to_speech, |
|
inputs=gr.Textbox(label="Enter Turkish text to convert to speech", value="Yapay zekayı seviyorum."), |
|
outputs=gr.Audio(label="Generated Speech"), |
|
title="Turkish SpeechT5 Text-to-Speech Demo", |
|
description="Enter Turkish text and listen to the generated speech using the fine-tuned SpeechT5 model." |
|
) |
|
|
|
|
|
iface.launch() |