Spaces:
Running
Running
emilylearning
commited on
Commit
·
e451fb3
1
Parent(s):
07e397d
add OLM model, rem depracted gradio 'type' arg
Browse files- .gitignore +1 -1
- README.md +7 -0
- app.py +5 -4
.gitignore
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
venv_*
|
2 |
__pycache__*
|
3 |
.DS_Store
|
4 |
-
|
|
|
1 |
venv_*
|
2 |
__pycache__*
|
3 |
.DS_Store
|
4 |
+
app.py-*
|
README.md
CHANGED
@@ -9,4 +9,11 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Setup env:
|
13 |
+
```
|
14 |
+
python3 -m venv venv_llm
|
15 |
+
source venv_llm/bin/activate
|
16 |
+
pip install -r requirements.txt
|
17 |
+
```
|
18 |
+
|
19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -17,6 +17,7 @@ MODEL_NAME_DICT = {
|
|
17 |
"bert-large-uncased": "BERT-large",
|
18 |
"roberta-base": "RoBERTa-base",
|
19 |
"bert-base-uncased": "BERT-base",
|
|
|
20 |
OWN_MODEL_NAME: "Your model's"
|
21 |
}
|
22 |
MODEL_NAMES = list(MODEL_NAME_DICT.keys())
|
@@ -50,6 +51,7 @@ GENDERED_LIST = [
|
|
50 |
]
|
51 |
|
52 |
|
|
|
53 |
# %%
|
54 |
# Fire up the models
|
55 |
models = {m : pipeline("fill-mask", model=m) for m in MODEL_NAMES if m != OWN_MODEL_NAME}
|
@@ -265,12 +267,11 @@ with demo:
|
|
265 |
"If there is an * by a sentence number, then at least one top prediction for that sentence was non-gendered.")
|
266 |
|
267 |
with gr.Row():
|
268 |
-
female_fig = gr.Plot(type="auto")
|
269 |
with gr.Row():
|
270 |
female_df = gr.Dataframe()
|
271 |
with gr.Row():
|
272 |
-
display_text = gr.Textbox(
|
273 |
-
type="auto", label="Sample of text fed to model")
|
274 |
|
275 |
uncertain_btn.click(
|
276 |
fn=predict_gender_pronouns,
|
@@ -279,6 +280,6 @@ with demo:
|
|
279 |
outputs=[display_text, female_df, female_fig]
|
280 |
)
|
281 |
|
282 |
-
demo.launch(debug=True)
|
283 |
|
284 |
# %%
|
|
|
17 |
"bert-large-uncased": "BERT-large",
|
18 |
"roberta-base": "RoBERTa-base",
|
19 |
"bert-base-uncased": "BERT-base",
|
20 |
+
"olm/olm-roberta-base-oct-2022": "OLM_RoBERTa-base",
|
21 |
OWN_MODEL_NAME: "Your model's"
|
22 |
}
|
23 |
MODEL_NAMES = list(MODEL_NAME_DICT.keys())
|
|
|
51 |
]
|
52 |
|
53 |
|
54 |
+
|
55 |
# %%
|
56 |
# Fire up the models
|
57 |
models = {m : pipeline("fill-mask", model=m) for m in MODEL_NAMES if m != OWN_MODEL_NAME}
|
|
|
267 |
"If there is an * by a sentence number, then at least one top prediction for that sentence was non-gendered.")
|
268 |
|
269 |
with gr.Row():
|
270 |
+
female_fig = gr.Plot()#type="auto")
|
271 |
with gr.Row():
|
272 |
female_df = gr.Dataframe()
|
273 |
with gr.Row():
|
274 |
+
display_text = gr.Textbox(label="Sample of text fed to model")
|
|
|
275 |
|
276 |
uncertain_btn.click(
|
277 |
fn=predict_gender_pronouns,
|
|
|
280 |
outputs=[display_text, female_df, female_fig]
|
281 |
)
|
282 |
|
283 |
+
demo.launch(share=True, debug=True)
|
284 |
|
285 |
# %%
|