emielclopterop commited on
Commit
25f8ce5
1 Parent(s): 59394f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -25,7 +25,7 @@ def classify_text(text, labels):
25
  return {label: float(f"{prob:.4f}") for label, prob in zip(results["labels"], results["scores"])}
26
 
27
  def translate_text(text):
28
- return translation_pipeline(text)[0]['translation_text'] if text else "No translation available"
29
 
30
  def classify_topic(text):
31
  results = topic_classification_pipeline(text)
@@ -50,14 +50,14 @@ def multi_model_interaction(text):
50
  with gr.Blocks() as demo:
51
  with gr.Tab("Single Models"):
52
  with gr.Column():
53
- gr.Markdown("### Question Answering")
54
  context = gr.Textbox(label="Context")
55
  question = gr.Textbox(label="Question")
56
  answer_output = gr.Text(label="Answer")
57
  gr.Button("Answer").click(answer_question, inputs=[context, question], outputs=answer_output)
58
 
59
  with gr.Column():
60
- gr.Markdown("### Zero-Shot Classification")
61
  text_zsc = gr.Textbox(label="Text")
62
  labels = gr.Textbox(label="Labels (comma separated)")
63
  classification_result = gr.JSON(label="Classification Results")
@@ -69,18 +69,18 @@ with gr.Blocks() as demo:
69
  translated_text = gr.Text(label="Translated Text")
70
  gr.Button("Translate").click(translate_text, inputs=[text_to_translate], outputs=translated_text)
71
 
72
- with gr.Column():
73
- gr.Markdown("### Sentiment Analysis")
74
- text_for_sentiment = gr.Textbox(label="Text for Sentiment Analysis")
75
- sentiment_result = gr.Text(label="Sentiment")
76
- gr.Button("Classify Sentiment").click(classify_topic, inputs=[text_for_sentiment], outputs=sentiment_result)
77
-
78
  with gr.Column():
79
  gr.Markdown("### Summarization")
80
  text_to_summarize = gr.Textbox(label="Text")
81
  summary = gr.Text(label="Summary")
82
  gr.Button("Summarize").click(summarize_text, inputs=[text_to_summarize], outputs=summary)
83
 
 
 
 
 
 
 
84
  with gr.Tab("Multi-Model"):
85
  gr.Markdown("### Multi-Model")
86
  input_text = gr.Textbox(label="Enter Text for Multi-Model Analysis")
 
25
  return {label: float(f"{prob:.4f}") for label, prob in zip(results["labels"], results["scores"])}
26
 
27
  def translate_text(text):
28
+ return translation_pipeline(text)[0]['translation_text'] if text else "No translation"
29
 
30
  def classify_topic(text):
31
  results = topic_classification_pipeline(text)
 
50
  with gr.Blocks() as demo:
51
  with gr.Tab("Single Models"):
52
  with gr.Column():
53
+ gr.Markdown("### Question")
54
  context = gr.Textbox(label="Context")
55
  question = gr.Textbox(label="Question")
56
  answer_output = gr.Text(label="Answer")
57
  gr.Button("Answer").click(answer_question, inputs=[context, question], outputs=answer_output)
58
 
59
  with gr.Column():
60
+ gr.Markdown("### Zero-Shot")
61
  text_zsc = gr.Textbox(label="Text")
62
  labels = gr.Textbox(label="Labels (comma separated)")
63
  classification_result = gr.JSON(label="Classification Results")
 
69
  translated_text = gr.Text(label="Translated Text")
70
  gr.Button("Translate").click(translate_text, inputs=[text_to_translate], outputs=translated_text)
71
 
 
 
 
 
 
 
72
  with gr.Column():
73
  gr.Markdown("### Summarization")
74
  text_to_summarize = gr.Textbox(label="Text")
75
  summary = gr.Text(label="Summary")
76
  gr.Button("Summarize").click(summarize_text, inputs=[text_to_summarize], outputs=summary)
77
 
78
+ with gr.Column():
79
+ gr.Markdown("### Sentiment Analysis")
80
+ text_for_sentiment = gr.Textbox(label="Text for Sentiment Analysis")
81
+ sentiment_result = gr.Text(label="Sentiment")
82
+ gr.Button("Classify Sentiment").click(classify_topic, inputs=[text_for_sentiment], outputs=sentiment_result)
83
+
84
  with gr.Tab("Multi-Model"):
85
  gr.Markdown("### Multi-Model")
86
  input_text = gr.Textbox(label="Enter Text for Multi-Model Analysis")