bstraehle commited on
Commit
f5cbcda
1 Parent(s): b38a8c5

Update rag_langgraph.py

Browse files
Files changed (1) hide show
  1. rag_langgraph.py +1 -3
rag_langgraph.py CHANGED
@@ -6,7 +6,6 @@ from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedD
6
 
7
  from langchain.agents import AgentExecutor, create_openai_tools_agent
8
  from langchain_community.tools.tavily_search import TavilySearchResults
9
- from langchain_community.utilities import ArxivAPIWrapper
10
  from langchain_core.messages import BaseMessage, HumanMessage
11
  from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
12
  from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
@@ -43,7 +42,6 @@ def today_tool(text: str) -> str:
43
  return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
44
 
45
  def create_graph(model, topic):
46
- arxiv_tool = ArxivAPIWrapper()
47
  tavily_tool = TavilySearchResults(max_results=10)
48
 
49
  members = ["Researcher"]
@@ -96,7 +94,7 @@ def create_graph(model, topic):
96
  | JsonOutputFunctionsParser()
97
  )
98
 
99
- researcher_agent = create_agent(llm, [arxiv_tool, tavily_tool, today_tool], system_prompt=
100
  "1. Research content on topic: " + topic + ", prioritizing research papers. "
101
  "2. Based on your research, write a 2000-word article on the topic. "
102
  "3. At the beginning of the article, add current date and author: Multi-AI-Agent System. "
 
6
 
7
  from langchain.agents import AgentExecutor, create_openai_tools_agent
8
  from langchain_community.tools.tavily_search import TavilySearchResults
 
9
  from langchain_core.messages import BaseMessage, HumanMessage
10
  from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
11
  from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
 
42
  return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
43
 
44
  def create_graph(model, topic):
 
45
  tavily_tool = TavilySearchResults(max_results=10)
46
 
47
  members = ["Researcher"]
 
94
  | JsonOutputFunctionsParser()
95
  )
96
 
97
+ researcher_agent = create_agent(llm, [tavily_tool, today_tool], system_prompt=
98
  "1. Research content on topic: " + topic + ", prioritizing research papers. "
99
  "2. Based on your research, write a 2000-word article on the topic. "
100
  "3. At the beginning of the article, add current date and author: Multi-AI-Agent System. "