Update rag_langgraph.py
Browse files- rag_langgraph.py +10 -20
rag_langgraph.py
CHANGED
@@ -17,6 +17,8 @@ import functools
|
|
17 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
18 |
from langgraph.graph import StateGraph, END
|
19 |
|
|
|
|
|
20 |
class AgentState(TypedDict):
|
21 |
messages: Annotated[Sequence[BaseMessage], operator.add]
|
22 |
next: str
|
@@ -24,10 +26,7 @@ class AgentState(TypedDict):
|
|
24 |
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
25 |
prompt = ChatPromptTemplate.from_messages(
|
26 |
[
|
27 |
-
(
|
28 |
-
"system",
|
29 |
-
system_prompt
|
30 |
-
),
|
31 |
MessagesPlaceholder(variable_name="messages"),
|
32 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
33 |
]
|
@@ -46,7 +45,7 @@ def create_graph(topic, word_count):
|
|
46 |
members = ["Blogger"]
|
47 |
|
48 |
system_prompt = (
|
49 |
-
"You are a
|
50 |
" following workers: {members}. Given the following user request,"
|
51 |
" respond with the worker to act next. Each worker will perform a"
|
52 |
" task and respond with their results and status. When finished,"
|
@@ -85,7 +84,7 @@ def create_graph(topic, word_count):
|
|
85 |
]
|
86 |
).partial(options=str(options), members=", ".join(members))
|
87 |
|
88 |
-
llm = ChatOpenAI(model=
|
89 |
|
90 |
supervisor_chain = (
|
91 |
prompt
|
@@ -93,14 +92,14 @@ def create_graph(topic, word_count):
|
|
93 |
| JsonOutputFunctionsParser()
|
94 |
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
blogger_agent = create_agent(llm,
|
100 |
blogger_node = functools.partial(agent_node, agent=blogger_agent, name="Blogger")
|
101 |
|
102 |
workflow = StateGraph(AgentState)
|
103 |
-
|
104 |
workflow.add_node("Blogger", blogger_node)
|
105 |
workflow.add_node("Manager", supervisor_chain)
|
106 |
|
@@ -119,16 +118,7 @@ def run_multi_agent(topic, word_count):
|
|
119 |
graph = create_graph(topic, word_count)
|
120 |
result = graph.invoke({
|
121 |
"messages": [
|
122 |
-
HumanMessage(content=
|
123 |
]
|
124 |
})
|
125 |
-
print("###")
|
126 |
-
print(result)
|
127 |
-
print("###")
|
128 |
-
print(result['messages'])
|
129 |
-
print("###")
|
130 |
-
print(result['messages'][1])
|
131 |
-
print("###")
|
132 |
-
print(result['messages'][1].content)
|
133 |
-
print("###")
|
134 |
return result['messages'][1].content
|
|
|
17 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
18 |
from langgraph.graph import StateGraph, END
|
19 |
|
20 |
+
LLM = "gpt-4o"
|
21 |
+
|
22 |
class AgentState(TypedDict):
|
23 |
messages: Annotated[Sequence[BaseMessage], operator.add]
|
24 |
next: str
|
|
|
26 |
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
27 |
prompt = ChatPromptTemplate.from_messages(
|
28 |
[
|
29 |
+
("system", system_prompt),
|
|
|
|
|
|
|
30 |
MessagesPlaceholder(variable_name="messages"),
|
31 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
32 |
]
|
|
|
45 |
members = ["Blogger"]
|
46 |
|
47 |
system_prompt = (
|
48 |
+
"You are a manager tasked with managing a conversation between the"
|
49 |
" following workers: {members}. Given the following user request,"
|
50 |
" respond with the worker to act next. Each worker will perform a"
|
51 |
" task and respond with their results and status. When finished,"
|
|
|
84 |
]
|
85 |
).partial(options=str(options), members=", ".join(members))
|
86 |
|
87 |
+
llm = ChatOpenAI(model=LLM)
|
88 |
|
89 |
supervisor_chain = (
|
90 |
prompt
|
|
|
92 |
| JsonOutputFunctionsParser()
|
93 |
)
|
94 |
|
95 |
+
research_agent = create_agent(llm, [tavily_tool], f"Research content on topic {topic}, prioritizing research papers.")
|
96 |
+
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
|
97 |
|
98 |
+
blogger_agent = create_agent(llm, f"Write a {word_count}-word blog post on topic {topic}. Add a references section with research papers.")
|
99 |
blogger_node = functools.partial(agent_node, agent=blogger_agent, name="Blogger")
|
100 |
|
101 |
workflow = StateGraph(AgentState)
|
102 |
+
workflow.add_node("Researcher", research_node)
|
103 |
workflow.add_node("Blogger", blogger_node)
|
104 |
workflow.add_node("Manager", supervisor_chain)
|
105 |
|
|
|
118 |
graph = create_graph(topic, word_count)
|
119 |
result = graph.invoke({
|
120 |
"messages": [
|
121 |
+
HumanMessage(content=topic)
|
122 |
]
|
123 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
return result['messages'][1].content
|