|
import functools, operator |
|
|
|
from datetime import date |
|
|
|
from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union |
|
|
|
from langchain.agents import AgentExecutor, create_openai_tools_agent |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_core.messages import BaseMessage, HumanMessage |
|
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.tools import tool |
|
from langchain_openai import ChatOpenAI |
|
|
|
from langgraph.graph import StateGraph, END |
|
|
|
class AgentState(TypedDict): |
|
messages: Annotated[Sequence[BaseMessage], operator.add] |
|
next: str |
|
|
|
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str): |
|
prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", system_prompt), |
|
MessagesPlaceholder(variable_name="messages"), |
|
MessagesPlaceholder(variable_name="agent_scratchpad"), |
|
] |
|
) |
|
agent = create_openai_tools_agent(llm, tools, prompt) |
|
executor = AgentExecutor(agent=agent, tools=tools) |
|
return executor |
|
|
|
def agent_node(state, agent, name): |
|
result = agent.invoke(state) |
|
return {"messages": [HumanMessage(content=result["output"], name=name)]} |
|
|
|
@tool |
|
def today_tool(text: str) -> str: |
|
"""Returns today's date. Use this for any questions related to knowing today's date. |
|
The input should always be an empty string, and this function will always return today's date. |
|
Any date mathematics should occur outside this function.""" |
|
return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.") |
|
|
|
def create_graph(model, topic): |
|
tavily_tool = TavilySearchResults(max_results=10) |
|
|
|
members = ["Researcher"] |
|
|
|
system_prompt = ( |
|
"You are a Manager tasked with managing a conversation between the" |
|
" following agent(s): {members}. Given the following user request," |
|
" respond with the agent to act next. Each agent will perform a" |
|
" task and respond with their results and status. When finished," |
|
" respond with FINISH." |
|
) |
|
|
|
options = ["FINISH"] + members |
|
|
|
function_def = { |
|
"name": "route", |
|
"description": "Select the next role.", |
|
"parameters": { |
|
"title": "routeSchema", |
|
"type": "object", |
|
"properties": { |
|
"next": { |
|
"title": "Next", |
|
"anyOf": [ |
|
{"enum": options}, |
|
], |
|
} |
|
}, |
|
"required": ["next"], |
|
}, |
|
} |
|
|
|
prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", system_prompt), |
|
MessagesPlaceholder(variable_name="messages"), |
|
( |
|
"system", |
|
"Given the conversation above, who should act next?" |
|
" Or should we FINISH? Select one of: {options}", |
|
), |
|
] |
|
).partial(options=str(options), members=", ".join(members)) |
|
|
|
llm = ChatOpenAI(model=model) |
|
|
|
supervisor_chain = ( |
|
prompt |
|
| llm.bind_functions(functions=[function_def], function_call="route") |
|
| JsonOutputFunctionsParser() |
|
) |
|
|
|
researcher_agent = create_agent(llm, [tavily_tool, today_tool], system_prompt="1. Research content on topic: " + topic + ", prioritizing research papers. " |
|
"2. Based on your research, write a 2000-word article on the topic. " |
|
"3. At the beginning of the article, add current date and author: Multi-AI-Agent System. " |
|
"4. At the end of the article, add a references section with research papers.") |
|
researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher") |
|
|
|
workflow = StateGraph(AgentState) |
|
workflow.add_node("Researcher", researcher_node) |
|
workflow.add_node("Manager", supervisor_chain) |
|
|
|
for member in members: |
|
workflow.add_edge(member, "Manager") |
|
|
|
conditional_map = {k: k for k in members} |
|
conditional_map["FINISH"] = END |
|
|
|
workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map) |
|
workflow.set_entry_point("Manager") |
|
|
|
return workflow.compile() |
|
|
|
def run_multi_agent(model, topic): |
|
graph = create_graph(model, topic) |
|
|
|
result = graph.invoke({ |
|
"messages": [ |
|
HumanMessage(content=topic) |
|
] |
|
}) |
|
|
|
article = result['messages'][-1].content |
|
|
|
print("---") |
|
print(article) |
|
print("---") |
|
|
|
return article |