elsoori commited on
Commit
a12a4a3
1 Parent(s): 8dd95af

Initial commit

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import PIL.Image as Image
3
+ import numpy as np
4
+ import pandas as pd
5
+ import requests
6
+ from io import BytesIO
7
+ from fastai.vision.all import *
8
+ #from fastai.vision.all import load_learner
9
+
10
+ # Initialize Streamlit app
11
+ st.title("White Blood Cell Classifier")
12
+
13
+
14
+ # Load the FastAI model for WBC identification
15
+ fastai_model = load_learner('model1.pkl')
16
+
17
+ # File uploader for image input
18
+ uploaded_file = st.file_uploader("Upload an image for detection", type=["jpg", "png"])
19
+
20
+ if uploaded_file:
21
+ # Open the uploaded image
22
+ image = Image.open(uploaded_file)
23
+
24
+ # Perform inference
25
+ results = model.predict(np.array(image))
26
+
27
+ # Display results
28
+ st.image(image, caption="Uploaded Image", use_column_width=True)
29
+
30
+ # Render detection results
31
+ rendered_image = render_result(model=model, image=image, result=results[0])
32
+
33
+ # Show the rendered result
34
+ st.image(rendered_image, caption="Detection Results", use_column_width=True)
35
+
36
+
37
+
38
+ # Display the counts of each cell type
39
+ st.write("Cell Type :")
40
+ # Perform inference with the FastAI model
41
+ pred, idx, probs = fastai_model.predict(image)
42
+ st.write("White Blood Cell Classification:")
43
+ categories = ('EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL')
44
+ results_dict = dict(zip(categories, map(float, probs)))
45
+ st.write(results_dict)
46
+ else:
47
+ st.write("Upload an image to start detection.")