Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
# Initialize Streamlit app
|
10 |
st.title("Blood Cell Detection with YOLOv8")
|
@@ -18,6 +19,9 @@ model.overrides['iou'] = 0.45 # NMS IoU threshold
|
|
18 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
19 |
model.overrides['max_det'] = 1000 # Maximum number of detections per image
|
20 |
|
|
|
|
|
|
|
21 |
# File uploader for image input
|
22 |
uploaded_file = st.file_uploader("Upload an image for detection", type=["jpg", "png"])
|
23 |
|
@@ -39,7 +43,9 @@ if uploaded_file:
|
|
39 |
|
40 |
# Count the number of each cell type
|
41 |
cell_counts = {"RBC": 0, "WBC": 0, "Platelets": 0}
|
42 |
-
|
|
|
|
|
43 |
# Display details of detected boxes
|
44 |
st.write("Detection Results:")
|
45 |
for box in results[0].boxes:
|
@@ -48,6 +54,7 @@ if uploaded_file:
|
|
48 |
cell_counts["RBC"] += 1
|
49 |
elif class_index == 2: # WBC
|
50 |
cell_counts["WBC"] += 1
|
|
|
51 |
elif class_index == 0: # Platelets
|
52 |
cell_counts["Platelets"] += 1
|
53 |
|
@@ -59,6 +66,13 @@ if uploaded_file:
|
|
59 |
# Display the counts of each cell type
|
60 |
st.write("Cell Type Counts:")
|
61 |
st.write(pd.DataFrame.from_dict(cell_counts, orient='index', columns=['Count']))
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
st.write("Upload an image to start detection.")
|
|
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
from io import BytesIO
|
8 |
+
from fastai.vision.all import load_learner
|
9 |
|
10 |
# Initialize Streamlit app
|
11 |
st.title("Blood Cell Detection with YOLOv8")
|
|
|
19 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
20 |
model.overrides['max_det'] = 1000 # Maximum number of detections per image
|
21 |
|
22 |
+
# Load the FastAI model for WBC identification
|
23 |
+
fastai_model = load_learner('model1.pkl')
|
24 |
+
|
25 |
# File uploader for image input
|
26 |
uploaded_file = st.file_uploader("Upload an image for detection", type=["jpg", "png"])
|
27 |
|
|
|
43 |
|
44 |
# Count the number of each cell type
|
45 |
cell_counts = {"RBC": 0, "WBC": 0, "Platelets": 0}
|
46 |
+
|
47 |
+
# Count cells and check for WBC
|
48 |
+
has_wbc = False
|
49 |
# Display details of detected boxes
|
50 |
st.write("Detection Results:")
|
51 |
for box in results[0].boxes:
|
|
|
54 |
cell_counts["RBC"] += 1
|
55 |
elif class_index == 2: # WBC
|
56 |
cell_counts["WBC"] += 1
|
57 |
+
has_wbc = True # WBC detected
|
58 |
elif class_index == 0: # Platelets
|
59 |
cell_counts["Platelets"] += 1
|
60 |
|
|
|
66 |
# Display the counts of each cell type
|
67 |
st.write("Cell Type Counts:")
|
68 |
st.write(pd.DataFrame.from_dict(cell_counts, orient='index', columns=['Count']))
|
69 |
+
# If a WBC is detected, run the second model
|
70 |
+
if has_wbc:
|
71 |
+
# Perform inference with the FastAI model
|
72 |
+
pred, idx, probs = fastai_model.predict(image)
|
73 |
+
st.write("White Blood Cell Classification:")
|
74 |
+
categories = ('EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL')
|
75 |
+
results_dict = dict(zip(categories, map(float, probs)))
|
76 |
+
st.write(results_dict)
|
77 |
else:
|
78 |
st.write("Upload an image to start detection.")
|