elozano commited on
Commit
5dcec38
Β·
1 Parent(s): 0b69b1e

App updated

Browse files
Files changed (3) hide show
  1. README.md +4 -4
  2. app.py +28 -2
  3. tweet_pipeline.py +37 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: News
3
- emoji: πŸ“‰
4
- colorFrom: blue
5
- colorTo: indigo
6
  sdk: streamlit
7
  app_file: app.py
8
  pinned: false
 
1
  ---
2
+ title: Tweet Evaluator
3
+ emoji: 🐦
4
+ colorFrom: DeepSkyBlue
5
+ colorTo: LightSkyBlue
6
  sdk: streamlit
7
  app_file: app.py
8
  pinned: false
app.py CHANGED
@@ -1,4 +1,30 @@
1
  import streamlit as st
2
 
3
- x = st.slider("Select a value")
4
- st.write(x, "squared is", x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ from tweet_pipeline import TweetPipeline
4
+
5
+ EMOTION_EMOJIS = {"Anger": "😑", "Joy": "πŸ˜‚", "Optimism": "πŸ˜‰", "Sadness": "😒"}
6
+ OFFENSIVE_EMOJIS = {"Offensive": "😈", "Non-Offensive": "πŸ˜‡"}
7
+ SENTIMENT_EMOJIS = {"Negative": "❌", "Neutral": "πŸ€·β€β™‚οΈ", "Positive": "βœ…"}
8
+
9
+ tweet_eval = TweetPipeline()
10
+
11
+ st.title("🐦 Tweet Evaluator")
12
+ input_text = st.text_input("")
13
+
14
+ button = st.button("Evaluate!")
15
+
16
+ if button and input_text != "":
17
+ with st.spinner("Evaluating tweet..."):
18
+ prediction = tweet_eval(input_text)
19
+ st.success("Tweet successfully evaluated!")
20
+ st.markdown(
21
+ f"{EMOTION_EMOJIS[prediction['emotion']]} **Emotion:** {prediction['emotion']}"
22
+ )
23
+ st.markdown(
24
+ f"{OFFENSIVE_EMOJIS[prediction['offensive']]} **Offensive:** {'Yes' if prediction['offensive'] == 'Offensive' else 'No'}"
25
+ )
26
+ st.markdown(
27
+ f"{SENTIMENT_EMOJIS[prediction['sentiment']]} **Sentiment:** {prediction['sentiment']}"
28
+ )
29
+ elif button and not input_text:
30
+ st.warning("Please, introduce a tweet to eval.")
tweet_pipeline.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Dict
3
+
4
+ from transformers import (
5
+ AutoModelForSequenceClassification,
6
+ AutoTokenizer,
7
+ TextClassificationPipeline,
8
+ )
9
+
10
+
11
+ class TweetPipeline:
12
+ def __init__(self):
13
+ self.emotion_pipeline = TextClassificationPipeline(
14
+ model=AutoModelForSequenceClassification.from_pretrained(
15
+ "elozano/tweet_emotion_eval"
16
+ ),
17
+ tokenizer=AutoTokenizer.from_pretrained("elozano/tweet_emotion_eval"),
18
+ )
19
+ self.offensive_pipeline = TextClassificationPipeline(
20
+ model=AutoModelForSequenceClassification.from_pretrained(
21
+ "elozano/tweet_offensive_eval"
22
+ ),
23
+ tokenizer=AutoTokenizer.from_pretrained("elozano/tweet_offensive_eval"),
24
+ )
25
+ self.sentiment_pipeline = TextClassificationPipeline(
26
+ model=AutoModelForSequenceClassification.from_pretrained(
27
+ "elozano/tweet_sentiment_eval"
28
+ ),
29
+ tokenizer=AutoTokenizer.from_pretrained("elozano/tweet_sentiment_eval"),
30
+ )
31
+
32
+ def __call__(self, text: str) -> Dict[str, str]:
33
+ return {
34
+ "emotion": self.emotion_pipeline(text)[0]["label"],
35
+ "offensive": self.offensive_pipeline(text)[0]["label"],
36
+ "sentiment": self.sentiment_pipeline(text)[0]["label"],
37
+ }