Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as components | |
import numpy as np | |
import pickle | |
import pandas as pd | |
pd.set_option('display.max_columns', 500) | |
def impute_missing_values(df_,dict_impute): | |
return df_.fillna(dict_impute) | |
to_rescale_ = ['diff_MS','MS_d','pr_pre_tavi', | |
'surface_systole','MS_s','age', | |
'ncc_calcif_n','calc_risque_n'] | |
to_encode_ = ['syncope_Oui', 'lcc_calc_1.0', 'bloc_branche_pre_bbd'] | |
st.title("Pacemaker Implantation (IPM) risk prediction") | |
st.subheader(f':red[Pre procedural] Tavi implantation model') | |
cols = to_rescale_+to_encode_ | |
with st.form(key='cols_form'): | |
c1,c2= st.columns(2) | |
c3,c4 = st.columns(2) | |
c5,c6,c7,c8 = st.columns(4) | |
c9,c10,c11 = st.columns(3) | |
with c1: | |
age = st.number_input('Age (year)',value=83) | |
with c2: | |
syncope_Oui = st.selectbox("Syncope",key="syncope",options=["Yes", "No"]) | |
with c3: | |
pr_pre_tavi = st.number_input('Pre-TAVI PR time (ms)',value=186) | |
with c4: | |
bloc_branche_pre_bbd = st.selectbox("Right bundle branch block",key="prebbd",options=["Yes", "No"]) | |
with c5: | |
lcc_calc_1 = st.selectbox("LCC calcification grade",key='lcccalc1',options=[0,1,2,3]) | |
with c6: | |
ncc_calcif_n = st.selectbox("NCC calcification grade",key='nccalcn',options=[0,1,2,3]) | |
with c7: | |
rcc_calcif_n = st.selectbox("RCC calcification grade",key='rccalcn',options=[0,1,2,3]) | |
with c8: | |
isc_calcif_n = st.selectbox("IS calcification",key='isccalcn',options=["Yes", "No"]) | |
with c9: | |
MS_s = st.number_input('Systolic membranous septal length(mm)',value=8.0) | |
with c10: | |
MS_d = st.number_input('Diastolic membranous septal length (mm)',value=8.9) | |
with c11: | |
surface_systole = st.number_input('Systolic aortic annular surface (mm²)',value=483) | |
submitButton = st.form_submit_button(label = 'Predict') | |
#load model, set cache to prevent reloading | |
def load_model(): | |
with open(r"models/ensemble_models_pre.pkl", "rb") as input_file: | |
models = pickle.load(input_file) | |
return models | |
#@st.cache_resource() | |
def load_scaler(): | |
with open(r"models/ensemble_scaler_pre.pkl", "rb") as input_file: | |
scalers = pickle.load(input_file) | |
return scalers | |
def load_impute(): | |
with open(r"models/ensemble_dict_impute_pre.pkl", "rb") as input_file: | |
dicts_impute = pickle.load(input_file) | |
return dicts_impute | |
with st.spinner("Loading Model...."): | |
models = load_model() | |
dicts_impute = load_impute() | |
scalers = load_scaler() | |
#st.write("Predicting Class...") | |
with st.spinner("Prediction..."): | |
# preprocessing | |
diff_MS = MS_d - MS_s | |
lcc_calc_1 = 1 if lcc_calc_1 == 1 else 0 | |
syncope_Oui = 1 if syncope_Oui == "Yes" else 0 | |
isc_calcif_n = 1 if isc_calcif_n == "Yes" else 0 | |
bloc_branche_pre_bbd = 1 if bloc_branche_pre_bbd == "Yes" else 0 | |
calc_risque_n = ncc_calcif_n + rcc_calcif_n + isc_calcif_n | |
age = int(age)*365 | |
bool_warning = False | |
if MS_d<1.5 or MS_d>15.30: | |
bool_warning = True | |
if MS_s<2.0 or MS_s> 14.61: | |
bool_warning = True | |
if pr_pre_tavi<90 or pr_pre_tavi>344: | |
bool_warning = True | |
if surface_systole<300 or surface_systole>724: | |
bool_warning = True | |
if age<21156 or age>34939: | |
bool_warning = True | |
if bool_warning: | |
st.write(":warning: Warning Results might not be reliable because:") | |
if MS_d<1.5 or MS_d>15.30: | |
st.write("Our study population had a dMS (mm) between 1.5 and 15.30 (mm)") | |
if MS_s<2.0 or MS_s> 14.61: | |
st.write("Our study population had a sMS (mm) between 2 and 14.61 (mm) ") | |
if pr_pre_tavi<90 or pr_pre_tavi>344: | |
st.write("Our study population had a pre-TAVI PR surface between 90 and 344 (ms)") | |
if surface_systole<300 or surface_systole>724: | |
st.write("Our study population had a systolic aortic annular surface between 300 and 724 (mm²) ") | |
if age<21156 or age>34939: | |
st.write("Our study population had an age between 58 and 95 years old ") | |
pred_arr = np.array([[diff_MS,MS_d,pr_pre_tavi, | |
surface_systole,MS_s,age, | |
ncc_calcif_n,calc_risque_n, | |
syncope_Oui, lcc_calc_1, bloc_branche_pre_bbd]]) | |
pred_df = pd.DataFrame(pred_arr,columns=cols) | |
print(pred_df.head()) | |
pred_dfs = [impute_missing_values(pred_df,dict_impute) for dict_impute in dicts_impute] | |
dfs_scaled_ = [scaler.transform(df_[to_rescale_]) for df_,scaler in zip(pred_dfs,scalers)] | |
dfs_scaled = [pd.DataFrame(columns=to_rescale_,data=df_scaled_) for df_scaled_ in dfs_scaled_] | |
dfs_cat = [pd.concat([df_scaled,pred_df[to_encode_]],axis=1) for df_scaled in dfs_scaled] | |
pred= round( np.array([model.predict_proba(pred_df_)[0][1] for pred_df_,model in zip(dfs_cat,models)]).mean()*100,2) | |
if pred>90: | |
st.write("PMI risk probability >90 %") | |
elif pred<10: | |
st.write("PMI risk probability <10 %") | |
else: | |
st.write("PMI risk probability :",pred,' %') | |