mix / app.py
Elora
nice
2879460
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler
from compel import Compel, ReturnedEmbeddingsType
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("John6666/mala-anime-mix-nsfw-pony-xl-v6-sdxl", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("John6666/mala-anime-mix-nsfw-pony-xl-v6-sdxl", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
pipe.safety_checker = None
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
pipe.load_lora_weights("xenov2/pony", weight_name="style_cogecha_pony_1.safetensors", adapter_name="chochega")
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_weight):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
conditioning, pooled = compel(prompt)
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipe(
# prompt = prompt,
# negative_prompt = negative_prompt,
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_propmt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negative_pooled,
guidance_scale = guidance_scale,
cross_attention_kwargs={"scale": lora_weight},
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
lora_weight = gr.Slider(
label="Lora weight",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.0,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=80,
step=1,
value=20,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_weight],
outputs = [result]
)
demo.queue().launch()