Spaces:
Sleeping
Sleeping
from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, pipeline | |
import gradio as grad | |
import ast | |
mdl_name = "deepset/roberta-base-squad2" | |
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR' | |
model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name) | |
model_translate_token = AutoTokenizer.from_pretrained(model_translate_name) | |
translate_pipeline = ('translation', model=model_translate_name) | |
def answer_question(question,context): | |
text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
di=ast.literal_eval(text) | |
response = my_pipeline(di) | |
print('response', response) | |
return response | |
def translate(text): | |
inputs = model_translate_token(text, return_tensor='pt') | |
translate_output = model_translate.generate(**inputs) | |
response = model_translate_token(translate_output[0], skip_special_tokens=True) | |
#response = translate_pipeline(text) | |
return response | |
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
grad.Interface(translate, inputs=['text',], outputs='text').launch() |