EllyOkumuAzubi
second commit message
7541dae
raw
history blame
1.85 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
#.
# setting up the requiremnts
model_path = f"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis')
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
# Defining the main function
def sentiment_analysis(text):
text = preprocess(text)
# PyTorch-based models
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
# Format output dict of scores
labels = ['Negative๐Ÿ˜ข๐Ÿ˜ข', 'Neutral', 'Positive๐Ÿ˜ƒ๐Ÿ˜ƒ']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
welcome_message = "Welcome to Team Paris tweets first shot Sentimental Analysis App ๐Ÿ˜ƒ ๐Ÿ˜ƒ ๐Ÿ˜ƒ ๐Ÿ˜ƒ "
demo = gr.Interface(
fn=sentiment_analysis,
inputs=gr.Textbox(placeholder="Write your tweet here..."),
outputs="label",
interpretation="default",
examples=[["This is wonderful!"]],
title=welcome_message
)
demo.launch()
# def greet(name):
# return "Hello " + name + "!!"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()