Elle McFarlane
commited on
Commit
·
19ec9f5
1
Parent(s):
48c898d
update to multi-model selection
Browse files- app.py +59 -127
- model.py +211 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,146 +1,78 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def
|
|
|
|
|
22 |
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
"
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
|
53 |
-
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
with gr.Row():
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
maximum=
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
run_button.click(
|
141 |
-
fn
|
142 |
-
inputs
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
|
|
|
|
7 |
|
8 |
+
from model import Model
|
9 |
|
10 |
+
DESCRIPTION = "# [AvantGAN](https://github.com/ellemcfarlane/AvantGAN)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
+
def get_sample_image_url(name: str) -> str:
|
14 |
+
sample_image_dir = "https://huggingface.co/spaces/ellemac/avantGAN/resolve/main/samples"
|
15 |
+
return f"{sample_image_dir}/{name}.png"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def get_sample_image_markdown(name: str) -> str:
|
19 |
+
url = get_sample_image_url(name)
|
20 |
+
size = 128 if ("stylegan3" in name or "original" in name) else 64
|
21 |
+
return f"""
|
22 |
+
- size: {size}x{size}
|
23 |
+
"""
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
model = Model()
|
|
|
|
|
|
|
27 |
|
28 |
+
with gr.Blocks(css="style.css") as demo:
|
29 |
+
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
with gr.Tabs():
|
32 |
+
with gr.TabItem("App"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Row():
|
34 |
+
with gr.Column():
|
35 |
+
model_name = gr.Dropdown(
|
36 |
+
label="Model", choices=list(model.MODEL_DICT.keys()), value="stylegan3-abstract"
|
37 |
+
)
|
38 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0)
|
39 |
+
run_button = gr.Button()
|
40 |
+
with gr.Column():
|
41 |
+
result = gr.Image(label="Result", elem_id="result", width=300, height=300)
|
42 |
+
print("RESULT", result, type(result), result.__dict__)
|
43 |
+
|
44 |
+
with gr.TabItem("Sample Images"):
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Row():
|
46 |
+
model_name2 = gr.Dropdown(
|
47 |
+
[
|
48 |
+
"stylegan3-abstract",
|
49 |
+
"stylegan3-high-fidelity",
|
50 |
+
"ada-dcgan",
|
51 |
+
"original-training-data",
|
52 |
+
],
|
53 |
+
value="stylegan3-abstract",
|
54 |
+
label="Model",
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
+
with gr.Row():
|
57 |
+
text = get_sample_image_markdown(model_name2.value)
|
58 |
+
sample_images = gr.Markdown(text)
|
|
|
|
|
59 |
|
60 |
run_button.click(
|
61 |
+
fn=model.set_model_and_generate_image,
|
62 |
+
inputs=[
|
63 |
+
model_name,
|
64 |
+
seed,
|
65 |
+
],
|
66 |
+
outputs=result,
|
67 |
+
api_name="run",
|
68 |
+
)
|
69 |
+
model_name2.change(
|
70 |
+
fn=get_sample_image_markdown,
|
71 |
+
inputs=model_name2,
|
72 |
+
outputs=sample_images,
|
73 |
+
queue=False,
|
74 |
+
api_name=False,
|
75 |
)
|
76 |
|
77 |
+
if __name__ == "__main__":
|
78 |
+
demo.queue(max_size=20).launch()
|
model.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://huggingface.co/spaces/hysts/StyleGAN3/blob/main/model.py
|
2 |
+
|
3 |
+
import pathlib
|
4 |
+
import pickle
|
5 |
+
import sys
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torchvision.utils as vutils
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from io import BytesIO
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
current_dir = pathlib.Path(__file__).parent
|
19 |
+
submodule_dir = current_dir / "stylegan3"
|
20 |
+
sys.path.insert(0, submodule_dir.as_posix())
|
21 |
+
|
22 |
+
user = "ellemac"
|
23 |
+
dcgan_z_dim = 100
|
24 |
+
dcgan_gen_feats = 64
|
25 |
+
ngf = 64
|
26 |
+
dcgan_img_size = 64
|
27 |
+
nc = 3
|
28 |
+
|
29 |
+
|
30 |
+
class Generator(nn.Module):
|
31 |
+
def __init__(self, ngpu, nz):
|
32 |
+
super(Generator, self).__init__()
|
33 |
+
self.ngpu = ngpu
|
34 |
+
self.main = nn.Sequential(
|
35 |
+
# input is Z, going into a convolution
|
36 |
+
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
|
37 |
+
nn.BatchNorm2d(ngf * 8),
|
38 |
+
nn.LeakyReLU(0.2, inplace=True),
|
39 |
+
# state size. (ngf*8) x 4 x 4
|
40 |
+
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
41 |
+
nn.BatchNorm2d(ngf * 4),
|
42 |
+
nn.LeakyReLU(0.2, inplace=True),
|
43 |
+
# state size. (ngf*4) x 8 x 8
|
44 |
+
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
45 |
+
nn.BatchNorm2d(ngf * 2),
|
46 |
+
nn.LeakyReLU(0.2, inplace=True),
|
47 |
+
# state size. (ngf*2) x 16 x 16
|
48 |
+
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
49 |
+
nn.BatchNorm2d(ngf),
|
50 |
+
nn.LeakyReLU(0.2, inplace=True),
|
51 |
+
# state size. (ngf) x 32 x 32
|
52 |
+
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
|
53 |
+
nn.Tanh()
|
54 |
+
# state size. (nc) x 64 x 64
|
55 |
+
)
|
56 |
+
|
57 |
+
def forward(self, input):
|
58 |
+
return self.main(input)
|
59 |
+
|
60 |
+
# class Generator(nn.Module):
|
61 |
+
# def __init__(self, n_gen_feats, n_gpu, z_dim, n_channels):
|
62 |
+
# super(Generator, self).__init__()
|
63 |
+
# self.n_gpu = n_gpu
|
64 |
+
# self.main = nn.Sequential(
|
65 |
+
# # input is Z, going into a convolution
|
66 |
+
# nn.ConvTranspose2d(z_dim, n_gen_feats * 8, 4, 1, 0, bias=False),
|
67 |
+
# nn.BatchNorm2d(n_gen_feats * 8),
|
68 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
69 |
+
# # state size. (n_gen_feats*8) x 4 x 4
|
70 |
+
# nn.ConvTranspose2d(n_gen_feats * 8, n_gen_feats * 4, 4, 2, 1, bias=False),
|
71 |
+
# nn.BatchNorm2d(n_gen_feats * 4),
|
72 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
73 |
+
# # state size. (n_gen_feats*4) x 8 x 8
|
74 |
+
# nn.ConvTranspose2d(n_gen_feats * 4, n_gen_feats * 2, 4, 2, 1, bias=False),
|
75 |
+
# nn.BatchNorm2d(n_gen_feats * 2),
|
76 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
77 |
+
# # state size. (n_gen_feats*2) x 16 x 16
|
78 |
+
# nn.ConvTranspose2d(n_gen_feats * 2, n_gen_feats, 4, 2, 1, bias=False),
|
79 |
+
# nn.BatchNorm2d(n_gen_feats),
|
80 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
81 |
+
# # state size. (n_gen_feats) x 32 x 32
|
82 |
+
# nn.ConvTranspose2d(n_gen_feats, n_channels, 4, 2, 1, bias=False),
|
83 |
+
# nn.Tanh()
|
84 |
+
# # state size. (n_channels) x 64 x 64
|
85 |
+
# )
|
86 |
+
|
87 |
+
# def forward(self, input):
|
88 |
+
# return self.main(input)
|
89 |
+
|
90 |
+
class Model:
|
91 |
+
MODEL_DICT = {
|
92 |
+
"stylegan3-abstract": {"name": "abstract-560eps.pkl", "repo": "avantStyleGAN3"},
|
93 |
+
"stylegan3-high-fidelity": {"name": "high-fidelity-1120eps.pkl", "repo": "avantStyleGAN3"},
|
94 |
+
"ada-dcgan": {"name": "gen_6kepoch.pt", "repo": "avantGAN"},
|
95 |
+
}
|
96 |
+
|
97 |
+
def __init__(self):
|
98 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
99 |
+
self._download_all_models()
|
100 |
+
self.model_name = "ada-dcgan" #stylegan3-abstract"
|
101 |
+
self.model = self._load_model(self.model_name)
|
102 |
+
|
103 |
+
def _load_model(self, model_name: str) -> nn.Module:
|
104 |
+
file_name = self.MODEL_DICT[model_name]["name"]
|
105 |
+
repo = self.MODEL_DICT[model_name]["repo"]
|
106 |
+
path = hf_hub_download(f"{user}/{repo}", file_name) # model repo-type
|
107 |
+
if "stylegan" in model_name:
|
108 |
+
with open(path, "rb") as f:
|
109 |
+
model = pickle.load(f)["G_ema"]
|
110 |
+
else:
|
111 |
+
# todo (elle): don't hardcode the config
|
112 |
+
# model = Generator(dcgan_gen_feats, 1, dcgan_z_dim, 3)
|
113 |
+
print("WAS HERE")
|
114 |
+
model = Generator(0, 100)
|
115 |
+
|
116 |
+
model.eval()
|
117 |
+
model.to(self.device)
|
118 |
+
return model
|
119 |
+
|
120 |
+
def set_model(self, model_name: str) -> None:
|
121 |
+
if model_name == self.model_name:
|
122 |
+
return
|
123 |
+
self.model_name = model_name
|
124 |
+
self.model = self._load_model(model_name)
|
125 |
+
|
126 |
+
def _download_all_models(self):
|
127 |
+
for name in self.MODEL_DICT.keys():
|
128 |
+
self._load_model(name)
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def make_transform(translate: tuple[float, float] = (0,0), angle: float = 0) -> np.ndarray:
|
132 |
+
mat = np.eye(3)
|
133 |
+
sin = np.sin(angle / 360 * np.pi * 2)
|
134 |
+
cos = np.cos(angle / 360 * np.pi * 2)
|
135 |
+
mat[0][0] = cos
|
136 |
+
mat[0][1] = sin
|
137 |
+
mat[0][2] = translate[0]
|
138 |
+
mat[1][0] = -sin
|
139 |
+
mat[1][1] = cos
|
140 |
+
mat[1][2] = translate[1]
|
141 |
+
return mat
|
142 |
+
|
143 |
+
def generate_z(self, seed: int) -> torch.Tensor:
|
144 |
+
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
145 |
+
z = np.random.RandomState(seed).randn(1, self.model.z_dim)
|
146 |
+
return torch.from_numpy(z).float().to(self.device)
|
147 |
+
|
148 |
+
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
|
149 |
+
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
150 |
+
return tensor.cpu().numpy()
|
151 |
+
|
152 |
+
def dcgan_postprocess(self, tensor: torch.Tensor) -> np.ndarray:
|
153 |
+
tensor = (tensor.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
|
154 |
+
return tensor.cpu().numpy()
|
155 |
+
|
156 |
+
def set_transform(self, tx: float = 0, ty: float = 0, angle: float = 0) -> None:
|
157 |
+
mat = self.make_transform((tx, ty), angle)
|
158 |
+
mat = np.linalg.inv(mat)
|
159 |
+
self.model.synthesis.input.transform.copy_(torch.from_numpy(mat))
|
160 |
+
|
161 |
+
@torch.inference_mode()
|
162 |
+
def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor:
|
163 |
+
return self.model(z, label, truncation_psi=truncation_psi)
|
164 |
+
|
165 |
+
def generate_image(self, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0) -> np.ndarray:
|
166 |
+
self.set_transform(tx, ty, angle)
|
167 |
+
|
168 |
+
z = self.generate_z(seed)
|
169 |
+
label = torch.zeros([1, self.model.c_dim], device=self.device)
|
170 |
+
|
171 |
+
out = self.generate(z, label, truncation_psi)
|
172 |
+
out = self.postprocess(out)
|
173 |
+
return out[0]
|
174 |
+
|
175 |
+
def dcgan_generate_image(self, seed: int) -> np.ndarray:
|
176 |
+
dcgan_img_size = 64
|
177 |
+
dcgan_z_dim = 100
|
178 |
+
|
179 |
+
with torch.no_grad():
|
180 |
+
n_images = 1
|
181 |
+
z = torch.randn(n_images, dcgan_z_dim, 1, 1, device=self.device)
|
182 |
+
fake_images = self.model(z.to(self.device)).cpu()
|
183 |
+
fake_images = fake_images.view(fake_images.size(0), 3, dcgan_img_size, dcgan_img_size)
|
184 |
+
|
185 |
+
print('fake', fake_images)
|
186 |
+
print(fake_images.min(), fake_images.max())
|
187 |
+
# Create a grid of images
|
188 |
+
grid = vutils.make_grid(fake_images, normalize=True)
|
189 |
+
print('grid', grid)
|
190 |
+
# Plot the grid and save it to a buffer
|
191 |
+
fig, ax = plt.subplots()
|
192 |
+
ax.imshow(grid.permute(1, 2, 0)) # Convert from CHW to HWC for imshow
|
193 |
+
plt.axis('off')
|
194 |
+
|
195 |
+
# Save the plot to a buffer
|
196 |
+
buf = BytesIO()
|
197 |
+
plt.savefig(buf, format='png')
|
198 |
+
buf.seek(0)
|
199 |
+
|
200 |
+
# Load the buffer into a PIL Image
|
201 |
+
img = Image.open(buf)
|
202 |
+
return img
|
203 |
+
|
204 |
+
def set_model_and_generate_image(
|
205 |
+
self, model_name: str, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0
|
206 |
+
) -> np.ndarray:
|
207 |
+
self.set_model(model_name)
|
208 |
+
if "stylegan3" in model_name:
|
209 |
+
return self.generate_image(seed, truncation_psi, tx, ty, angle)
|
210 |
+
else:
|
211 |
+
return self.dcgan_generate_image(seed)
|
requirements.txt
CHANGED
@@ -3,4 +3,4 @@ diffusers
|
|
3 |
invisible_watermark
|
4 |
torch
|
5 |
transformers
|
6 |
-
xformers
|
|
|
3 |
invisible_watermark
|
4 |
torch
|
5 |
transformers
|
6 |
+
xformers
|