Spaces:
Sleeping
Sleeping
import os | |
import re | |
from argparse import Namespace | |
from os.path import join as pjoin | |
from utils.word_vectorizer import POS_enumerator | |
def is_float(numStr): | |
flag = False | |
numStr = str(numStr).strip().lstrip('-').lstrip('+') | |
try: | |
reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$') | |
res = reg.match(str(numStr)) | |
if res: | |
flag = True | |
except Exception as ex: | |
print("is_float() - error: " + str(ex)) | |
return flag | |
def is_number(numStr): | |
flag = False | |
numStr = str(numStr).strip().lstrip('-').lstrip('+') | |
if str(numStr).isdigit(): | |
flag = True | |
return flag | |
def get_opt(opt_path, device): | |
opt = Namespace() | |
opt_dict = vars(opt) | |
skip = ('-------------- End ----------------', | |
'------------ Options -------------', | |
'\n') | |
print('Reading', opt_path) | |
with open(opt_path) as f: | |
for line in f: | |
if line.strip() not in skip: | |
# print(line.strip()) | |
key, value = line.strip().split(': ') | |
if value in ('True', 'False'): | |
opt_dict[key] = True if value == 'True' else False | |
elif is_float(value): | |
opt_dict[key] = float(value) | |
elif is_number(value): | |
opt_dict[key] = int(value) | |
else: | |
opt_dict[key] = str(value) | |
# opt_dict['which_epoch'] = 'latest' | |
if 'num_layers' not in opt_dict: | |
opt_dict['num_layers'] = 8 | |
if 'latent_dim' not in opt_dict: | |
opt_dict['latent_dim'] = 512 | |
if 'diffusion_steps' not in opt_dict: | |
opt_dict['diffusion_steps'] = 1000 | |
if 'no_clip' not in opt_dict: | |
opt_dict['no_clip'] = False | |
if 'no_eff' not in opt_dict: | |
opt_dict['no_eff'] = False | |
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name) | |
opt.model_dir = pjoin(opt.save_root, 'model') | |
opt.meta_dir = pjoin(opt.save_root, 'meta') | |
if opt.dataset_name == 't2m': | |
opt.data_root = './data/HumanML3D' | |
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs') | |
opt.text_dir = pjoin(opt.data_root, 'texts') | |
opt.joints_num = 22 | |
opt.dim_pose = 263 | |
opt.max_motion_length = 196 | |
elif opt.dataset_name == 'kit': | |
opt.data_root = './data/KIT-ML' | |
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs') | |
opt.text_dir = pjoin(opt.data_root, 'texts') | |
opt.joints_num = 21 | |
opt.dim_pose = 251 | |
opt.max_motion_length = 196 | |
elif opt.dataset_name == 'grab': | |
opt.data_root = './data/GRAB' | |
opt.motion_dir = pjoin(opt.data_root, 'joints') | |
opt.text_dir = pjoin(opt.data_root, 'texts') | |
# opt.joints_num = 72 # TODO (elmc): verify this BUT ALSO I'M NOT USING IT FOR NOW! | |
opt.dim_pose = 212 # drop betas (body shape) and face-shape from Motion data (via to_smplx_params & smplx_dict_to_array method) | |
# TOOD (elmc): verify this | |
opt.max_motion_length = 196 | |
else: | |
raise KeyError('Dataset not recognized') | |
# TODO (elmc): is dim_word ever actually used? | |
# opt.dim_word = 300 | |
# TODO (elmc): what is num classes for GRAB? | |
# opt.num_classes = 200 // opt.unit_length | |
opt.dim_pos_ohot = len(POS_enumerator) | |
opt.is_train = False | |
opt.is_continue = False | |
opt.device = device | |
return opt |