Spaces:
Running
Running
from __future__ import print_function | |
import os | |
import numpy as np | |
##### NEW | |
# !pip --no-cache-dir install -U --force-reinstall matplotlib | |
import tkinter | |
import matplotlib | |
matplotlib.use('Agg') | |
###### NEW end | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from skimage import io | |
from random import randint | |
import glob | |
import time | |
import argparse | |
from filterpy.kalman import KalmanFilter | |
def get_color(): | |
# r = randint(0, 255) | |
# g = randint(0, 255) | |
# b = randint(0, 255) | |
color = (randint(0, 255), randint(0, 255), randint(0, 255)) | |
return color | |
def linear_assignment(cost_matrix): | |
try: | |
import lap #linear assignment problem solver | |
_, x, y = lap.lapjv(cost_matrix, extend_cost = True) | |
return np.array([[y[i],i] for i in x if i>=0]) | |
except ImportError: | |
from scipy.optimize import linear_sum_assignment | |
x,y = linear_sum_assignment(cost_matrix) | |
return np.array(list(zip(x,y))) | |
"""From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]""" | |
def iou_batch(bb_test, bb_gt): | |
bb_gt = np.expand_dims(bb_gt, 0) | |
bb_test = np.expand_dims(bb_test, 1) | |
xx1 = np.maximum(bb_test[...,0], bb_gt[..., 0]) | |
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) | |
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) | |
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) | |
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) | |
return(o) | |
"""Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the center of the box and s is the scale/area and r is the aspect ratio""" | |
def convert_bbox_to_z(bbox): | |
w = bbox[2] - bbox[0] | |
h = bbox[3] - bbox[1] | |
x = bbox[0] + w/2. | |
y = bbox[1] + h/2. | |
s = w * h | |
#scale is just area | |
r = w / float(h) | |
return np.array([x, y, s, r]).reshape((4, 1)) | |
"""Takes a bounding box in the centre form [x,y,s,r] and returns it in the form | |
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right""" | |
def convert_x_to_bbox(x, score=None): | |
w = np.sqrt(x[2] * x[3]) | |
h = x[2] / w | |
if(score==None): | |
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) | |
else: | |
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) | |
"""This class represents the internal state of individual tracked objects observed as bbox.""" | |
class KalmanBoxTracker(object): | |
count = 0 | |
def __init__(self, bbox): | |
""" | |
Initialize a tracker using initial bounding box | |
Parameter 'bbox' must have 'detected class' int number at the -1 position. | |
""" | |
self.kf = KalmanFilter(dim_x=7, dim_z=4) | |
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) | |
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) | |
self.kf.R[2:,2:] *= 10. # R: Covariance matrix of measurement noise (set to high for noisy inputs -> more 'inertia' of boxes') | |
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities | |
self.kf.P *= 10. | |
self.kf.Q[-1,-1] *= 0.5 # Q: Covariance matrix of process noise (set to high for erratically moving things) | |
self.kf.Q[4:,4:] *= 0.5 | |
self.kf.x[:4] = convert_bbox_to_z(bbox) # STATE VECTOR | |
self.time_since_update = 0 | |
self.id = KalmanBoxTracker.count | |
KalmanBoxTracker.count += 1 | |
self.history = [] | |
self.hits = 0 | |
self.hit_streak = 0 | |
self.age = 0 | |
self.centroidarr = [] | |
CX = (bbox[0]+bbox[2])//2 | |
CY = (bbox[1]+bbox[3])//2 | |
self.centroidarr.append((CX,CY)) | |
#keep yolov5 detected class information | |
self.detclass = bbox[5] | |
def update(self, bbox): | |
""" | |
Updates the state vector with observed bbox | |
""" | |
self.time_since_update = 0 | |
self.history = [] | |
self.hits += 1 | |
self.hit_streak += 1 | |
self.kf.update(convert_bbox_to_z(bbox)) | |
self.detclass = bbox[5] | |
CX = (bbox[0]+bbox[2])//2 | |
CY = (bbox[1]+bbox[3])//2 | |
self.centroidarr.append((CX,CY)) | |
def predict(self): | |
""" | |
Advances the state vector and returns the predicted bounding box estimate | |
""" | |
if((self.kf.x[6]+self.kf.x[2])<=0): | |
self.kf.x[6] *= 0.0 | |
self.kf.predict() | |
self.age += 1 | |
if(self.time_since_update>0): | |
self.hit_streak = 0 | |
self.time_since_update += 1 | |
self.history.append(convert_x_to_bbox(self.kf.x)) | |
# bbox=self.history[-1] | |
# CX = (bbox[0]+bbox[2])/2 | |
# CY = (bbox[1]+bbox[3])/2 | |
# self.centroidarr.append((CX,CY)) | |
return self.history[-1] | |
def get_state(self): | |
""" | |
Returns the current bounding box estimate | |
# test | |
arr1 = np.array([[1,2,3,4]]) | |
arr2 = np.array([0]) | |
arr3 = np.expand_dims(arr2, 0) | |
np.concatenate((arr1,arr3), axis=1) | |
""" | |
arr_detclass = np.expand_dims(np.array([self.detclass]), 0) | |
arr_u_dot = np.expand_dims(self.kf.x[4],0) | |
arr_v_dot = np.expand_dims(self.kf.x[5],0) | |
arr_s_dot = np.expand_dims(self.kf.x[6],0) | |
return np.concatenate((convert_x_to_bbox(self.kf.x), arr_detclass, arr_u_dot, arr_v_dot, arr_s_dot), axis=1) | |
def associate_detections_to_trackers(detections, trackers, iou_threshold = 0.3): | |
""" | |
Assigns detections to tracked object (both represented as bounding boxes) | |
Returns 3 lists of | |
1. matches, | |
2. unmatched_detections | |
3. unmatched_trackers | |
""" | |
if(len(trackers)==0): | |
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | |
iou_matrix = iou_batch(detections, trackers) | |
if min(iou_matrix.shape) > 0: | |
a = (iou_matrix > iou_threshold).astype(np.int32) | |
if a.sum(1).max() == 1 and a.sum(0).max() ==1: | |
matched_indices = np.stack(np.where(a), axis=1) | |
else: | |
matched_indices = linear_assignment(-iou_matrix) | |
else: | |
matched_indices = np.empty(shape=(0,2)) | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if(d not in matched_indices[:,0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if(t not in matched_indices[:,1]): | |
unmatched_trackers.append(t) | |
#filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if(iou_matrix[m[0], m[1]]<iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1,2)) | |
if(len(matches)==0): | |
matches = np.empty((0,2), dtype=int) | |
else: | |
matches = np.concatenate(matches, axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
class Sort(object): | |
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): | |
""" | |
Parameters for SORT | |
""" | |
self.max_age = max_age | |
self.min_hits = min_hits | |
self.iou_threshold = iou_threshold | |
self.trackers = [] | |
self.frame_count = 0 | |
self.color_list = [] | |
def getTrackers(self,): | |
return self.trackers | |
def update(self, dets= np.empty((0,6)), unique_color = False): | |
""" | |
Parameters: | |
'dets' - a numpy array of detection in the format [[x1, y1, x2, y2, score], [x1,y1,x2,y2,score],...] | |
Ensure to call this method even frame has no detections. (pass np.empty((0,5))) | |
Returns a similar array, where the last column is object ID (replacing confidence score) | |
NOTE: The number of objects returned may differ from the number of objects provided. | |
""" | |
self.frame_count += 1 | |
# Get predicted locations from existing trackers | |
trks = np.zeros((len(self.trackers), 6)) | |
to_del = [] | |
ret = [] | |
for t, trk in enumerate(trks): | |
pos = self.trackers[t].predict()[0] | |
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0, 0] | |
if np.any(np.isnan(pos)): | |
to_del.append(t) | |
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) | |
for t in reversed(to_del): | |
self.trackers.pop(t) | |
if unique_color: | |
self.color_list.pop(t) | |
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold) | |
# Update matched trackers with assigned detections | |
for m in matched: | |
self.trackers[m[1]].update(dets[m[0], :]) | |
# Create and initialize new trackers for unmatched detections | |
for i in unmatched_dets: | |
trk = KalmanBoxTracker(np.hstack((dets[i,:], np.array([0])))) | |
self.trackers.append(trk) | |
if unique_color: | |
self.color_list.append(get_color()) | |
i = len(self.trackers) | |
for trk in reversed(self.trackers): | |
d = trk.get_state()[0] | |
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): | |
ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) #+1'd because MOT benchmark requires positive value | |
i -= 1 | |
#remove dead tracklet | |
if(trk.time_since_update >self.max_age): | |
self.trackers.pop(i) | |
if unique_color: | |
self.color_list.pop(i) | |
if(len(ret) > 0): | |
return np.concatenate(ret) | |
return np.empty((0,6)) | |
def parse_args(): | |
"""Parse input arguments.""" | |
parser = argparse.ArgumentParser(description='SORT demo') | |
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true') | |
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data') | |
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train') | |
parser.add_argument("--max_age", | |
help="Maximum number of frames to keep alive a track without associated detections.", | |
type=int, default=1) | |
parser.add_argument("--min_hits", | |
help="Minimum number of associated detections before track is initialised.", | |
type=int, default=3) | |
parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3) | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
# all train | |
args = parse_args() | |
display = args.display | |
phase = args.phase | |
total_time = 0.0 | |
total_frames = 0 | |
colours = np.random.rand(32, 3) #used only for display | |
if(display): | |
if not os.path.exists('mot_benchmark'): | |
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') | |
exit() | |
plt.ion() | |
fig = plt.figure() | |
ax1 = fig.add_subplot(111, aspect='equal') | |
if not os.path.exists('output'): | |
os.makedirs('output') | |
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') | |
for seq_dets_fn in glob.glob(pattern): | |
mot_tracker = Sort(max_age=args.max_age, | |
min_hits=args.min_hits, | |
iou_threshold=args.iou_threshold) #create instance of the SORT tracker | |
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',') | |
seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0] | |
with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file: | |
print("Processing %s."%(seq)) | |
for frame in range(int(seq_dets[:,0].max())): | |
frame += 1 #detection and frame numbers begin at 1 | |
dets = seq_dets[seq_dets[:, 0]==frame, 2:7] | |
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2] | |
total_frames += 1 | |
if(display): | |
fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame)) | |
im =io.imread(fn) | |
ax1.imshow(im) | |
plt.title(seq + ' Tracked Targets') | |
start_time = time.time() | |
trackers = mot_tracker.update(dets) | |
cycle_time = time.time() - start_time | |
total_time += cycle_time | |
for d in trackers: | |
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file) | |
if(display): | |
d = d.astype(np.int32) | |
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:])) | |
if(display): | |
fig.canvas.flush_events() | |
plt.draw() | |
ax1.cla() | |
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time)) | |
if(display): | |
print("Note: to get real runtime results run without the option: --display") | |