elkraken's picture
Duplicate from Aditya9790/yolo7-object-tracking
24e70a5
from __future__ import print_function
import os
import numpy as np
##### NEW
# !pip --no-cache-dir install -U --force-reinstall matplotlib
import tkinter
import matplotlib
matplotlib.use('Agg')
###### NEW end
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
from random import randint
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
def get_color():
# r = randint(0, 255)
# g = randint(0, 255)
# b = randint(0, 255)
color = (randint(0, 255), randint(0, 255), randint(0, 255))
return color
def linear_assignment(cost_matrix):
try:
import lap #linear assignment problem solver
_, x, y = lap.lapjv(cost_matrix, extend_cost = True)
return np.array([[y[i],i] for i in x if i>=0])
except ImportError:
from scipy.optimize import linear_sum_assignment
x,y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x,y)))
"""From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]"""
def iou_batch(bb_test, bb_gt):
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)
xx1 = np.maximum(bb_test[...,0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return(o)
"""Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the center of the box and s is the scale/area and r is the aspect ratio"""
def convert_bbox_to_z(bbox):
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w/2.
y = bbox[1] + h/2.
s = w * h
#scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
"""Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right"""
def convert_x_to_bbox(x, score=None):
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if(score==None):
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
else:
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
"""This class represents the internal state of individual tracked objects observed as bbox."""
class KalmanBoxTracker(object):
count = 0
def __init__(self, bbox):
"""
Initialize a tracker using initial bounding box
Parameter 'bbox' must have 'detected class' int number at the -1 position.
"""
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10. # R: Covariance matrix of measurement noise (set to high for noisy inputs -> more 'inertia' of boxes')
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.5 # Q: Covariance matrix of process noise (set to high for erratically moving things)
self.kf.Q[4:,4:] *= 0.5
self.kf.x[:4] = convert_bbox_to_z(bbox) # STATE VECTOR
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
self.centroidarr = []
CX = (bbox[0]+bbox[2])//2
CY = (bbox[1]+bbox[3])//2
self.centroidarr.append((CX,CY))
#keep yolov5 detected class information
self.detclass = bbox[5]
def update(self, bbox):
"""
Updates the state vector with observed bbox
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
self.detclass = bbox[5]
CX = (bbox[0]+bbox[2])//2
CY = (bbox[1]+bbox[3])//2
self.centroidarr.append((CX,CY))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate
"""
if((self.kf.x[6]+self.kf.x[2])<=0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if(self.time_since_update>0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
# bbox=self.history[-1]
# CX = (bbox[0]+bbox[2])/2
# CY = (bbox[1]+bbox[3])/2
# self.centroidarr.append((CX,CY))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate
# test
arr1 = np.array([[1,2,3,4]])
arr2 = np.array([0])
arr3 = np.expand_dims(arr2, 0)
np.concatenate((arr1,arr3), axis=1)
"""
arr_detclass = np.expand_dims(np.array([self.detclass]), 0)
arr_u_dot = np.expand_dims(self.kf.x[4],0)
arr_v_dot = np.expand_dims(self.kf.x[5],0)
arr_s_dot = np.expand_dims(self.kf.x[6],0)
return np.concatenate((convert_x_to_bbox(self.kf.x), arr_detclass, arr_u_dot, arr_v_dot, arr_s_dot), axis=1)
def associate_detections_to_trackers(detections, trackers, iou_threshold = 0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of
1. matches,
2. unmatched_detections
3. unmatched_trackers
"""
if(len(trackers)==0):
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
iou_matrix = iou_batch(detections, trackers)
if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() ==1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0,2))
unmatched_detections = []
for d, det in enumerate(detections):
if(d not in matched_indices[:,0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if(t not in matched_indices[:,1]):
unmatched_trackers.append(t)
#filter out matched with low IOU
matches = []
for m in matched_indices:
if(iou_matrix[m[0], m[1]]<iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
"""
Parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0
self.color_list = []
def getTrackers(self,):
return self.trackers
def update(self, dets= np.empty((0,6)), unique_color = False):
"""
Parameters:
'dets' - a numpy array of detection in the format [[x1, y1, x2, y2, score], [x1,y1,x2,y2,score],...]
Ensure to call this method even frame has no detections. (pass np.empty((0,5)))
Returns a similar array, where the last column is object ID (replacing confidence score)
NOTE: The number of objects returned may differ from the number of objects provided.
"""
self.frame_count += 1
# Get predicted locations from existing trackers
trks = np.zeros((len(self.trackers), 6))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0, 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
if unique_color:
self.color_list.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
# Update matched trackers with assigned detections
for m in matched:
self.trackers[m[1]].update(dets[m[0], :])
# Create and initialize new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(np.hstack((dets[i,:], np.array([0]))))
self.trackers.append(trk)
if unique_color:
self.color_list.append(get_color())
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) #+1'd because MOT benchmark requires positive value
i -= 1
#remove dead tracklet
if(trk.time_since_update >self.max_age):
self.trackers.pop(i)
if unique_color:
self.color_list.pop(i)
if(len(ret) > 0):
return np.concatenate(ret)
return np.empty((0,6))
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='SORT demo')
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
parser.add_argument("--max_age",
help="Maximum number of frames to keep alive a track without associated detections.",
type=int, default=1)
parser.add_argument("--min_hits",
help="Minimum number of associated detections before track is initialised.",
type=int, default=3)
parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3)
args = parser.parse_args()
return args
if __name__ == '__main__':
# all train
args = parse_args()
display = args.display
phase = args.phase
total_time = 0.0
total_frames = 0
colours = np.random.rand(32, 3) #used only for display
if(display):
if not os.path.exists('mot_benchmark'):
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
exit()
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111, aspect='equal')
if not os.path.exists('output'):
os.makedirs('output')
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')
for seq_dets_fn in glob.glob(pattern):
mot_tracker = Sort(max_age=args.max_age,
min_hits=args.min_hits,
iou_threshold=args.iou_threshold) #create instance of the SORT tracker
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0]
with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file:
print("Processing %s."%(seq))
for frame in range(int(seq_dets[:,0].max())):
frame += 1 #detection and frame numbers begin at 1
dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
total_frames += 1
if(display):
fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame))
im =io.imread(fn)
ax1.imshow(im)
plt.title(seq + ' Tracked Targets')
start_time = time.time()
trackers = mot_tracker.update(dets)
cycle_time = time.time() - start_time
total_time += cycle_time
for d in trackers:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
if(display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
if(display):
fig.canvas.flush_events()
plt.draw()
ax1.cla()
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
if(display):
print("Note: to get real runtime results run without the option: --display")