elitecode commited on
Commit
5234c53
1 Parent(s): ef7597f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pathlib
2
+
3
+ import gradio as gr
4
+ import open_clip
5
+ import torch
6
+
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+ model, _, transform = open_clip.create_model_and_transforms(
10
+ "coca_ViT-L-14",
11
+ pretrained="mscoco_finetuned_laion2B-s13B-b90k"
12
+ )
13
+ model.to(device)
14
+
15
+
16
+ def output_generate(image):
17
+ im = transform(image).unsqueeze(0).to(device)
18
+ with torch.no_grad(), torch.cuda.amp.autocast():
19
+ generated = model.generate(im, seq_len=20)
20
+ return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
21
+
22
+
23
+ paths = sorted(pathlib.Path("images").glob("*.jpg"))
24
+
25
+ iface = gr.Interface(
26
+ fn=output_generate,
27
+ inputs=gr.Image(label="Input image", type="pil"),
28
+ outputs=gr.Text(label="Caption output"),
29
+ title="CoCa: Contrastive Captioners",
30
+ description=(
31
+ """<br> An open source implementation of <strong>CoCa: Contrastive Captioners are Image-Text Foundation Models</strong> <a href=https://arxiv.org/abs/2205.01917>https://arxiv.org/abs/2205.01917.</a>
32
+ <br> Built using <a href=https://github.com/mlfoundations/open_clip>open_clip</a> with an effort from <a href=https://laion.ai/>LAION</a>.
33
+ <br> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<a href="https://huggingface.co/spaces/laion/CoCa?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>"""
34
+ ),
35
+ article="""""",
36
+ examples=[path.as_posix() for path in paths],
37
+ )
38
+ iface.launch()