|
|
|
|
|
|
|
import gradio as gr
|
|
from gradio_tokenizertextbox import TokenizerTextBox
|
|
import json
|
|
|
|
|
|
|
|
TOKENIZER_OPTIONS = {
|
|
"Xenova/clip-vit-large-patch14": "CLIP ViT-L/14",
|
|
"Xenova/gpt-4": "gpt-4 / gpt-3.5-turbo / text-embedding-ada-002",
|
|
"Xenova/text-davinci-003": "text-davinci-003 / text-davinci-002",
|
|
"Xenova/gpt-3": "gpt-3",
|
|
"Xenova/grok-1-tokenizer": "Grok-1",
|
|
"Xenova/claude-tokenizer": "Claude",
|
|
"Xenova/mistral-tokenizer-v3": "Mistral v3",
|
|
"Xenova/mistral-tokenizer-v1": "Mistral v1",
|
|
"Xenova/gemma-tokenizer": "Gemma",
|
|
"Xenova/llama-3-tokenizer": "Llama 3",
|
|
"Xenova/llama-tokenizer": "LLaMA / Llama 2",
|
|
"Xenova/c4ai-command-r-v01-tokenizer": "Cohere Command-R",
|
|
"Xenova/t5-small": "T5",
|
|
"Xenova/bert-base-cased": "bert-base-cased",
|
|
|
|
}
|
|
|
|
|
|
|
|
dropdown_choices = [
|
|
(display_name, model_name)
|
|
for model_name, display_name in TOKENIZER_OPTIONS.items()
|
|
]
|
|
|
|
def process_output(tokenization_data):
|
|
"""
|
|
This function receives the full dictionary from the component.
|
|
"""
|
|
if not tokenization_data:
|
|
return {"status": "Waiting for input..."}
|
|
return tokenization_data
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# TokenizerTextBox Component Demo")
|
|
gr.Markdown("# Component idea taken from the original example application on [Xenova Tokenizer Playground](https://github.com/huggingface/transformers.js-examples/tree/main/the-tokenizer-playground) ")
|
|
gr.Markdown("## Select a tokenizer from the dropdown menu to see how it processes your text in real-time.")
|
|
gr.Markdown("## For more models, check out the [Xenova Transformers Models](https://huggingface.co/Xenova/models) page.")
|
|
|
|
with gr.Row():
|
|
|
|
model_selector = gr.Dropdown(
|
|
label="Select a Tokenizer",
|
|
choices=dropdown_choices,
|
|
value="Xenova/clip-vit-large-patch14",
|
|
)
|
|
|
|
display_mode_radio = gr.Radio(
|
|
["text", "token_ids", "hidden"],
|
|
label="Display Mode",
|
|
value="text"
|
|
)
|
|
|
|
|
|
tokenizer_input = TokenizerTextBox(
|
|
label="Type your text here",
|
|
value="Gradio is an awesome tool for building ML demos!",
|
|
model="Xenova/clip-vit-large-patch14",
|
|
display_mode="text",
|
|
)
|
|
|
|
output_info = gr.JSON(label="Component Output (from preprocess)")
|
|
|
|
|
|
|
|
|
|
tokenizer_input.change(
|
|
fn=process_output,
|
|
inputs=tokenizer_input,
|
|
outputs=output_info
|
|
)
|
|
|
|
|
|
def update_tokenizer_model(selected_model):
|
|
return gr.update(model=selected_model)
|
|
|
|
model_selector.change(
|
|
fn=update_tokenizer_model,
|
|
inputs=model_selector,
|
|
outputs=tokenizer_input
|
|
)
|
|
|
|
|
|
def update_display_mode(mode):
|
|
return gr.update(display_mode=mode)
|
|
|
|
display_mode_radio.change(
|
|
fn=update_display_mode,
|
|
inputs=display_mode_radio,
|
|
outputs=tokenizer_input
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
demo.launch()
|
|
|