Spaces:
No application file
No application file
wip added multivariate
Browse files- .idea/.gitignore +8 -0
- .idea/Time-Series-Transformers-Comparison.iml +8 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- multivariate/train.py +91 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/Time-Series-Transformers-Comparison.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="hf2" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="hf2" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/Time-Series-Transformers-Comparison.iml" filepath="$PROJECT_DIR$/.idea/Time-Series-Transformers-Comparison.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
multivariate/train.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gluonts.dataset.multivariate_grouper import MultivariateGrouper
|
2 |
+
from gluonts.time_feature import time_features_from_frequency_str
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
from functools import lru_cache
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from functools import partial
|
11 |
+
from transformers import InformerConfig, InformerForPrediction
|
12 |
+
|
13 |
+
freq = "1H"
|
14 |
+
prediction_length = 48
|
15 |
+
|
16 |
+
|
17 |
+
def get_train_test_datasets():
|
18 |
+
|
19 |
+
@lru_cache(10_000)
|
20 |
+
def convert_to_pandas_period(date, freq):
|
21 |
+
return pd.Period(date, freq)
|
22 |
+
|
23 |
+
def transform_start_field(batch, freq):
|
24 |
+
batch["start"] = [convert_to_pandas_period(date, freq) for date in batch["start"]]
|
25 |
+
return batch
|
26 |
+
|
27 |
+
dataset = load_dataset("monash_tsf", "traffic_hourly")
|
28 |
+
train_dataset = dataset["train"]
|
29 |
+
test_dataset = dataset["test"]
|
30 |
+
|
31 |
+
train_dataset.set_transform(partial(transform_start_field, freq=freq))
|
32 |
+
test_dataset.set_transform(partial(transform_start_field, freq=freq))
|
33 |
+
|
34 |
+
return train_dataset, test_dataset
|
35 |
+
|
36 |
+
|
37 |
+
def get_train_test_multivariate_grouper(train_dataset, test_dataset):
|
38 |
+
num_of_variates = len(train_dataset)
|
39 |
+
|
40 |
+
train_grouper = MultivariateGrouper(max_target_dim=num_of_variates)
|
41 |
+
test_grouper = MultivariateGrouper(
|
42 |
+
max_target_dim=num_of_variates,
|
43 |
+
num_test_dates=len(test_dataset) // num_of_variates, # number of rolling test windows
|
44 |
+
)
|
45 |
+
return train_grouper, test_grouper
|
46 |
+
|
47 |
+
|
48 |
+
def get_informer_model(num_of_variates, time_features):
|
49 |
+
config = InformerConfig(
|
50 |
+
# in the multivariate setting, input_size is the number of variates in the time series per time step
|
51 |
+
input_size=num_of_variates,
|
52 |
+
# prediction length:
|
53 |
+
prediction_length=prediction_length,
|
54 |
+
# context length:
|
55 |
+
context_length=prediction_length * 2,
|
56 |
+
# lags value copied from 1 week before:
|
57 |
+
lags_sequence=[1, 24 * 7],
|
58 |
+
# we'll add 5 time features ("hour_of_day", ..., and "age"):
|
59 |
+
num_time_features=len(time_features) + 1,
|
60 |
+
|
61 |
+
# informer params:
|
62 |
+
dropout=0.1,
|
63 |
+
encoder_layers=6,
|
64 |
+
decoder_layers=4,
|
65 |
+
# project input from num_of_variates*len(lags_sequence)+num_time_features to:
|
66 |
+
d_model=64,
|
67 |
+
)
|
68 |
+
|
69 |
+
model = InformerForPrediction(config)
|
70 |
+
return model
|
71 |
+
|
72 |
+
|
73 |
+
def main():
|
74 |
+
train_dataset, test_dataset = get_train_test_datasets()
|
75 |
+
train_grouper, test_grouper = get_train_test_multivariate_grouper(train_dataset, test_dataset)
|
76 |
+
multi_variate_train_dataset = train_grouper(train_dataset)
|
77 |
+
multi_variate_test_dataset = test_grouper(test_dataset)
|
78 |
+
|
79 |
+
multi_variate_train_example = multi_variate_train_dataset[0]
|
80 |
+
train_example = train_dataset[0]
|
81 |
+
print('train_example["target"].shape =', len(train_example["target"]))
|
82 |
+
print('multi_variate_train_example["target"].shape =', multi_variate_train_example["target"].shape)
|
83 |
+
|
84 |
+
time_features = time_features_from_frequency_str(freq)
|
85 |
+
print(time_features)
|
86 |
+
|
87 |
+
informer = get_informer_model(num_of_variates=62, time_features=time_features)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
main()
|