Spaces:
Sleeping
Sleeping
agent + gr blocks
Browse files
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
.env
|
2 |
hf_to_chroma_ds
|
3 |
-
__pycache__
|
|
|
|
|
|
1 |
.env
|
2 |
hf_to_chroma_ds
|
3 |
+
__pycache__
|
4 |
+
app_archive.py
|
5 |
+
test_app.ipynb
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 📚
|
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
startup_duration_timeout: 1h
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
startup_duration_timeout: 1h
|
app.py
CHANGED
@@ -1,166 +1,81 @@
|
|
1 |
-
import
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from langchain.
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
from mixedbread_ai.client import MixedbreadAI
|
25 |
-
from tqdm import tqdm
|
26 |
-
|
27 |
-
# Global params
|
28 |
-
CHROMA_PATH = "chromadb_mem10_mxbai_800_complete"
|
29 |
-
MODEL_EMB = "mxbai-embed-large"
|
30 |
-
MODEL_RRK = "mixedbread-ai/mxbai-rerank-large-v1"
|
31 |
-
LLM_NAME = "gpt-4o-mini"
|
32 |
-
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
33 |
-
MXBAI_API_KEY = os.environ.get("MXBAI_API_KEY")
|
34 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
35 |
-
HF_API_KEY = os.environ.get("HF_API_KEY")
|
36 |
-
|
37 |
-
# MixedbreadAI Client
|
38 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
39 |
-
mxbai_client = MixedbreadAI(api_key=MXBAI_API_KEY)
|
40 |
-
model_emb = "mixedbread-ai/mxbai-embed-large-v1"
|
41 |
-
|
42 |
-
# Set up ChromaDB
|
43 |
-
memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_TOKEN, streaming=True)
|
44 |
-
batched_ds = memoires_ds.batch(batch_size=41000)
|
45 |
-
client = chromadb.Client()
|
46 |
-
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
47 |
-
|
48 |
-
for batch in tqdm(batched_ds, desc="Processing dataset batches"):
|
49 |
-
collection.add(
|
50 |
-
ids=batch["id"],
|
51 |
-
metadatas=batch["metadata"],
|
52 |
-
documents=batch["document"],
|
53 |
-
embeddings=batch["embedding"],
|
54 |
)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
"
|
87 |
-
|
88 |
-
|
89 |
-
)
|
90 |
-
|
91 |
-
|
92 |
-
[
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
("system", system_prompt),
|
112 |
-
MessagesPlaceholder("chat_history"),
|
113 |
-
("human", "{input}"),
|
114 |
-
]
|
115 |
-
)
|
116 |
-
|
117 |
-
# Create the question-answer chain
|
118 |
-
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
119 |
-
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
120 |
-
|
121 |
-
# Set up the conversation history
|
122 |
-
store = {}
|
123 |
-
|
124 |
-
def get_session_history(session_id: str) -> ChatMessageHistory:
|
125 |
-
if session_id not in store:
|
126 |
-
store[session_id] = ChatMessageHistory()
|
127 |
-
return store[session_id]
|
128 |
-
|
129 |
-
conversational_rag_chain = RunnableWithMessageHistory(
|
130 |
-
rag_chain,
|
131 |
-
get_session_history,
|
132 |
-
input_messages_key="input",
|
133 |
-
history_messages_key="chat_history",
|
134 |
-
output_messages_key="answer",
|
135 |
-
)
|
136 |
-
|
137 |
-
# Gradio interface
|
138 |
-
def chatbot(message, history):
|
139 |
-
session_id = "gradio_session"
|
140 |
-
response = conversational_rag_chain.invoke(
|
141 |
-
{"input": message},
|
142 |
-
config={
|
143 |
-
"configurable": {"session_id": session_id},
|
144 |
-
"callbacks": [ConsoleCallbackHandler()]
|
145 |
-
},
|
146 |
-
)["answer"]
|
147 |
-
return response
|
148 |
-
|
149 |
-
iface = gr.ChatInterface(
|
150 |
-
chatbot,
|
151 |
-
title="Dataltist Chatbot",
|
152 |
-
description="Posez vos questions sur l'assurance",
|
153 |
-
textbox=gr.Textbox(placeholder="Qu'est-ce que l'assurance multirisque habitation ?", container=False, scale=9),
|
154 |
-
theme="soft",
|
155 |
-
# examples=[
|
156 |
-
# "Qu'est-ce que l'assurance multirisque habitation ?",
|
157 |
-
# "Qu'est-ce que la garantie DTA ?",
|
158 |
-
# ],
|
159 |
-
retry_btn=None,
|
160 |
-
undo_btn=None,
|
161 |
-
submit_btn=gr.Button(value="Envoyer", icon="./send_icon.png", variant="primary"),
|
162 |
-
clear_btn="Effacer la conversation",
|
163 |
-
)
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
-
iface.launch() # share=True
|
|
|
1 |
+
import time
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from tools import create_agent
|
4 |
+
from langchain_core.messages import RemoveMessage
|
5 |
+
from langchain_core.messages import trim_messages
|
6 |
+
# from toolkits import create_agent
|
7 |
+
# from langchain.schema import AIMessage, HumanMessage, SystemMessage
|
8 |
+
|
9 |
+
AGENT = create_agent()
|
10 |
+
theme = gr.themes.Default(primary_hue="red", secondary_hue="red")
|
11 |
+
|
12 |
+
def filter_msg(msg_list:list, keep_n:int) -> list:
|
13 |
+
"""Keep only last keep_n messages from chat history. Preserves structure user msg -> tool msg -> ai msg"""
|
14 |
+
msg = trim_messages(
|
15 |
+
msg_list,
|
16 |
+
strategy="last",
|
17 |
+
token_counter=len,
|
18 |
+
max_tokens=keep_n,
|
19 |
+
start_on="human",
|
20 |
+
end_on=("tool", "ai"),
|
21 |
+
include_system=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
+
return [m.id for m in msg]
|
24 |
+
|
25 |
+
def agent_response(query, config, keep_n=10):
|
26 |
+
messages = AGENT.get_state(config).values.get("messages", [])
|
27 |
+
|
28 |
+
if len(messages) > keep_n:
|
29 |
+
keep_msg_ids = filter_msg(messages, keep_n)
|
30 |
+
AGENT.update_state(config, {"messages": [RemoveMessage(id=m.id) for m in messages if m.id not in keep_msg_ids]})
|
31 |
+
print("msg removed")
|
32 |
+
|
33 |
+
# Generate answer
|
34 |
+
answer = AGENT.invoke({"messages":query}, config=config)
|
35 |
+
return answer["messages"][-1].content
|
36 |
+
|
37 |
+
|
38 |
+
js_func = """
|
39 |
+
function refresh() {
|
40 |
+
const url = new URL(window.location);
|
41 |
+
|
42 |
+
if (url.searchParams.get('__theme') != 'light') {
|
43 |
+
url.searchParams.set('__theme', 'light');
|
44 |
+
window.location.href = url.href;
|
45 |
+
}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
def delete_agent():
|
51 |
+
print("del agent")
|
52 |
+
global AGENT
|
53 |
+
AGENT = create_agent()
|
54 |
+
# print(AGENT.get_state(config).values.get("messages"), "\n\n")
|
55 |
+
|
56 |
+
with gr.Blocks(theme=theme, js=js_func, title="Dataltist", fill_height=True) as iface:
|
57 |
+
gr.Markdown("# Dataltist Chatbot 🚀")
|
58 |
+
chatbot = gr.Chatbot(show_copy_button=True, show_share_button=False, type="messages", scale=1)
|
59 |
+
msg = gr.Textbox(lines=1, show_label=False, placeholder="Posez vos questions sur l'assurance") # submit_btn=True
|
60 |
+
clear = gr.ClearButton([msg, chatbot], value="Effacer 🗑")
|
61 |
+
config = {"configurable": {"thread_id": "1"}}
|
62 |
+
|
63 |
+
|
64 |
+
def user(user_message, history: list):
|
65 |
+
return "", history + [{"role": "user", "content": user_message}]
|
66 |
+
|
67 |
+
def bot(history: list):
|
68 |
+
bot_message = agent_response(history[-1]["content"], config) #AGENT.invoke({"messages":history[-1]["content"]}, config=config)
|
69 |
+
history.append({"role": "assistant", "content": ""})
|
70 |
+
for character in bot_message:
|
71 |
+
history[-1]['content'] += character
|
72 |
+
# time.sleep(0.005)
|
73 |
+
yield history
|
74 |
+
|
75 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
76 |
+
bot, chatbot, chatbot
|
77 |
+
)
|
78 |
+
iface.unload(delete_agent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
+
iface.launch() # share=True # auth=("admin", "admin")
|
tools.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.tools import TavilySearchResults
|
2 |
+
|
3 |
+
from langchain_core.retrievers import BaseRetriever
|
4 |
+
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
5 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
6 |
+
from langgraph.prebuilt import create_react_agent
|
7 |
+
from langchain_core.documents import Document
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
from langgraph.checkpoint.memory import MemorySaver
|
10 |
+
from mixedbread_ai.client import MixedbreadAI
|
11 |
+
from langchain.chains import create_retrieval_chain
|
12 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
13 |
+
from langchain.prompts import ChatPromptTemplate
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import os
|
16 |
+
from langchain_chroma import Chroma
|
17 |
+
import chromadb
|
18 |
+
from typing import List
|
19 |
+
from datasets import load_dataset
|
20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
+
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
+
# Global params
|
25 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
26 |
+
MODEL_EMB = "mxbai-embed-large"
|
27 |
+
MODEL_RRK = "mixedbread-ai/mxbai-rerank-large-v1"
|
28 |
+
LLM_NAME = "gpt-4o-mini"
|
29 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
30 |
+
MXBAI_API_KEY = os.environ.get("MXBAI_API_KEY")
|
31 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
32 |
+
HF_API_KEY = os.environ.get("HF_API_KEY")
|
33 |
+
|
34 |
+
# MixedbreadAI Client
|
35 |
+
mxbai_client = MixedbreadAI(api_key=MXBAI_API_KEY)
|
36 |
+
model_emb = "mixedbread-ai/mxbai-embed-large-v1"
|
37 |
+
|
38 |
+
# # Set up ChromaDB
|
39 |
+
memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_TOKEN, streaming=True)
|
40 |
+
batched_ds = memoires_ds.batch(batch_size=41000)
|
41 |
+
client = chromadb.Client()
|
42 |
+
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
llm_4o = ChatOpenAI(model="gpt-4o-mini", api_key=OPENAI_API_KEY, temperature=0)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def init_rag_tool():
|
51 |
+
"""Init tools to allow an LLM to query the documents"""
|
52 |
+
# client = chromadb.PersistentClient(path=CHROMA_PATH)
|
53 |
+
db = Chroma(
|
54 |
+
client=client,
|
55 |
+
collection_name=f"embeddings_mxbai",
|
56 |
+
embedding_function = HuggingFaceEmbeddings(model_name=model_emb)
|
57 |
+
)
|
58 |
+
# Reranker class
|
59 |
+
class Reranker(BaseRetriever):
|
60 |
+
retriever: VectorStoreRetriever
|
61 |
+
# model: CrossEncoder
|
62 |
+
k: int
|
63 |
+
|
64 |
+
def _get_relevant_documents(
|
65 |
+
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
66 |
+
) -> List[Document]:
|
67 |
+
docs = self.retriever.invoke(query)
|
68 |
+
results = mxbai_client.reranking(model=MODEL_RRK, query=query, input=[doc.page_content for doc in docs], return_input=True, top_k=self.k)
|
69 |
+
return [Document(page_content=res.input) for res in results.data]
|
70 |
+
|
71 |
+
# Set up reranker + LLM
|
72 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 25})
|
73 |
+
reranker = Reranker(retriever=retriever, k=4) #Reranker(retriever=retriever, model=model, k=4)
|
74 |
+
llm = ChatOpenAI(model=LLM_NAME, verbose=True)
|
75 |
+
|
76 |
+
|
77 |
+
system_prompt = (
|
78 |
+
"Réponds à la question en te basant uniquement sur le contexte suivant: \n\n {context}"
|
79 |
+
"Si tu ne connais pas la réponse, dis que tu ne sais pas."
|
80 |
+
)
|
81 |
+
|
82 |
+
prompt = ChatPromptTemplate.from_messages(
|
83 |
+
[
|
84 |
+
("system", system_prompt),
|
85 |
+
("human", "{input}"),
|
86 |
+
]
|
87 |
+
)
|
88 |
+
|
89 |
+
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
90 |
+
rag_chain = create_retrieval_chain(reranker, question_answer_chain)
|
91 |
+
|
92 |
+
rag_tool = rag_chain.as_tool(
|
93 |
+
name="RAG_search",
|
94 |
+
description="Recherche d'information dans les mémoires d'actuariat",
|
95 |
+
arg_types={"input": str},
|
96 |
+
)
|
97 |
+
return rag_tool
|
98 |
+
|
99 |
+
|
100 |
+
def init_websearch_tool():
|
101 |
+
web_search_tool = TavilySearchResults(
|
102 |
+
name="Web_search",
|
103 |
+
max_results=5,
|
104 |
+
description="Recherche d'informations sur le web",
|
105 |
+
search_depth="advanced",
|
106 |
+
include_answer=True,
|
107 |
+
include_raw_content=True,
|
108 |
+
include_images=False,
|
109 |
+
verbose=False,
|
110 |
+
)
|
111 |
+
return web_search_tool
|
112 |
+
|
113 |
+
|
114 |
+
def create_agent():
|
115 |
+
rag_tool = init_rag_tool()
|
116 |
+
web_search_tool = init_websearch_tool()
|
117 |
+
memory = MemorySaver()
|
118 |
+
llm_4o = ChatOpenAI(model="gpt-4o-mini", api_key=OPENAI_API_KEY, verbose=True, temperature=0, streaming=True)
|
119 |
+
tools = [rag_tool, web_search_tool]
|
120 |
+
system_message = """
|
121 |
+
Tu es un assistant dont la fonction est de répondre à des questions à propos de l'assurance et de l'actuariat.
|
122 |
+
Utilise les outils RAG_search ou Web_search pour répondre aux questions de l'utilisateur.
|
123 |
+
""" # Dans la réponse finale, sépare les informations de l'outil RAG et de l'outil Web.
|
124 |
+
|
125 |
+
react_agent = create_react_agent(llm_4o, tools, state_modifier=system_message, checkpointer=memory, debug=False)
|
126 |
+
return react_agent
|