elineve's picture
Upload 301 files
07423df
raw
history blame
8.35 kB
import gc
import logging
import os
import torch
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.utils import get_balanced_memory
from h2o_wave import Q
from h2o_wave import data as chat_data
from h2o_wave import ui
from llm_studio.app_utils.utils import get_experiments, get_ui_elements, set_env
from llm_studio.python_configs.base import DefaultConfigProblemBase
from llm_studio.src.datasets.text_utils import get_tokenizer
from llm_studio.src.utils.config_utils import (
NON_GENERATION_PROBLEM_TYPES,
load_config_yaml,
)
from llm_studio.src.utils.modeling_utils import load_checkpoint
logger = logging.getLogger(__name__)
async def chat_tab(q: Q, load_model=True):
if not await should_start_chat(q):
return
if load_model:
q.page["experiment/display/chat"] = ui.form_card(
box="first",
items=[ui.progress(label="Loading the model...")],
)
q.client["experiment/display/chat/messages"] = []
q.client.delete_cards.add("experiment/display/chat")
q.page["experiment/display/chat/settings"] = ui.form_card(
box="second",
items=[
ui.expander(
name="chat_settings",
label="Chat Settings",
items=[ui.progress(label="Loading model configuration...")],
expanded=True,
)
],
)
q.client.delete_cards.add("experiment/display/chat/settings")
await q.page.save()
logger.info(torch.cuda.memory_allocated())
if load_model:
with set_env(HUGGINGFACE_TOKEN=q.client["default_huggingface_api_token"]):
gpu_id = q.client["gpu_used_for_chat"] - 1
cfg, model, tokenizer = load_cfg_model_tokenizer(
q.client["experiment/display/experiment_path"], device=f"cuda:{gpu_id}"
)
q.client["experiment/display/chat/cfg"] = cfg
q.client["experiment/display/chat/model"] = model
q.client["experiment/display/chat/tokenizer"] = tokenizer
initial_message = "Model successfully loaded, how can I help you?"
else:
cfg = q.client["experiment/display/chat/cfg"]
assert q.client["experiment/display/chat/model"] is not None
assert q.client["experiment/display/chat/tokenizer"] is not None
initial_message = "Chat History cleaned. How can I help you?"
# Hide fields that are should not be visible in the UI
cfg.prediction._visibility["metric"] = -1
cfg.prediction._visibility["batch_size_inference"] = -1
cfg.prediction._visibility["min_length_inference"] = -1
cfg.prediction._visibility["stop_tokens"] = -1
logger.info(torch.cuda.memory_allocated())
q.page["experiment/display/chat"] = ui.chatbot_card(
box="first",
data=chat_data(fields="content from_user", t="list"), # type: ignore
name="experiment/display/chat/chatbot",
events=["stop", "suggestion"],
suggestions=[
ui.chat_suggestion(
"Write a poem about H2O LLM Studio",
label="Write a poem",
caption="about H2O LLM Studio",
icon="Edit",
),
ui.chat_suggestion(
"Plan a trip to Europe",
label="Plan a trip",
caption="to Europe",
icon="Airplane",
),
ui.chat_suggestion(
"Give me ideas for a new project",
label="Give me ideas",
caption="for a new project",
icon="Lightbulb",
),
ui.chat_suggestion(
"Explain me CSS preprocessors",
label="Explain me",
caption="CSS preprocessors",
icon="Code",
),
],
)
q.page["experiment/display/chat"].data += [initial_message, False]
option_items = get_ui_elements(
cfg=q.client["experiment/display/chat/cfg"].prediction,
q=q,
pre="chat/cfg_predictions",
)
q.page["experiment/display/chat/settings"] = ui.form_card(
box="second",
items=[
ui.buttons(
[
ui.button(
name="experiment/display/chat/clear_history",
label="Clear History",
primary=True,
),
]
),
ui.expander(
name="chat_settings",
label="Chat Settings",
items=option_items,
expanded=True,
),
],
)
async def should_start_chat(q: Q):
cfg: DefaultConfigProblemBase = load_config_yaml(
os.path.join(q.client["experiment/display/experiment_path"], "cfg.yaml")
)
if cfg.problem_type in NON_GENERATION_PROBLEM_TYPES:
q.page["experiment/display/chat"] = ui.form_card(
box="first",
items=[
ui.text(
"Chatbot is not available for text classification problems. "
"Please select a text generation problem."
)
],
title="",
)
q.client.delete_cards.add("experiment/display/chat")
return False
# gpu id in UI is offset by 1 to be in sync with experiment UI
gpu_id = q.client["gpu_used_for_chat"] - 1
if gpu_is_blocked(q, gpu_id):
q.page["experiment/display/chat"] = ui.form_card(
box="first",
items=[
ui.text(
f"""Chatbot is not available when GPU{q.client["gpu_used_for_chat"]}
is blocked by another experiment.
You can change "Gpu used for Chat" in the settings tab
to use another GPU for the chatbot. """
)
],
title="",
)
q.client.delete_cards.add("experiment/display/chat")
return False
return True
def gpu_is_blocked(q, gpu_id):
experiments = get_experiments(q=q)
running_experiments = experiments[experiments.status.isin(["running"])]
gpu_blocked = any(
[
str(gpu_id) in gpu_list
for gpu_list in running_experiments["gpu_list"]
.apply(lambda x: x.split(","))
.to_list()
]
)
return gpu_blocked
def load_cfg_model_tokenizer(
experiment_path: str, merge: bool = False, device: str = "cuda:0"
):
cfg = load_config_yaml(os.path.join(experiment_path, "cfg.yaml"))
cfg.architecture.pretrained = False
cfg.architecture.gradient_checkpointing = False
cfg.environment._device = device.replace("_shard", "")
cfg.environment._local_rank = 0
cfg.prediction._visibility["num_history"] = 1
tokenizer = get_tokenizer(cfg)
gc.collect()
torch.cuda.empty_cache()
if (
merge
and cfg.training.lora
and cfg.architecture.backbone_dtype in ("int4", "int8")
):
logger.info("Loading backbone in float16 for merging LORA weights.")
cfg.architecture.backbone_dtype = "float16"
cfg.architecture.pretrained = True
# if "cpu" in device:
# cfg.architecture.backbone_dtype = "float32"
with torch.device(cfg.environment._device):
model = cfg.architecture.model_class(cfg)
cfg.architecture.pretrained_weights = os.path.join(
experiment_path, "checkpoint.pth"
)
load_checkpoint(cfg, model, strict=False)
if device == "cpu_shard":
max_memory = get_balanced_memory(
model,
)
device_map = infer_auto_device_map(model, max_memory=max_memory)
model = dispatch_model(
model,
device_map=device_map,
)
if merge and cfg.training.lora:
# merges the LoRa layers into the base model.
# This is needed if one wants to use the base model as a standalone model.
logger.info("Merging LORA layers with base model.")
if device == "cpu":
model = model.to(torch.float32)
model.backbone = model.backbone.merge_and_unload()
if device == "cpu":
model = model.to(torch.float16)
model = model.eval()
model.backbone.use_cache = True
return cfg, model, tokenizer