ki_rag_classify / app.py
elia-waefler's picture
Upload 17 files
c2b923e verified
"""
testing my own vectors
list comprehension whenever possible
main function
if name == main
reusable functions that do just one specific task
type checking
def my_function(in_one: str, in_two: int) -> None:
pip install mypy for static typechecking.
O Gebäudebetrieb
Reinigung
FM Prozesse nicht für klassifizierung
Phase auch nicht. IMMER 53!!
VISION: AUTOMATISCHE BENENNUNG BEI ECODOMUS UPLOAD
Automatische metadatenzuodrdnung
"""
import json
import ingest
import my_1_writer
import my_2_sim_search
import my_vectors
import setup_db
import my_new_openai
import time
import streamlit as st
import os
from PIL import Image
import json
from typing import Any, Dict
def read_json_file(file_path: str) -> Dict[str, Any]:
"""
Diese Funktion liest den Inhalt einer JSON-Datei und gibt ihn als Wörterbuch zurück.
Argumente:
file_path (str): Der Dateipfad zur JSON-Datei.
Rückgabewert:
Dict[str, Any]: Der Inhalt der JSON-Datei als DICT
ANY ist oft ein VECTOR = list[float]
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
content = json.load(file)
return content
except Exception as e:
return {"error": str(e)}
#test this:
def extract_tables_from_page_advanced(page):
"""Extrahiert einfache Tabellenstrukturen basierend auf Textblöcken einer Seite."""
text_blocks = page.get_text("blocks")
text_blocks = sorted(text_blocks, key=lambda block: (block[1], block[0])) # Nach Y, dann X sortieren
# Erstellen eines Histogramms der X-Startpunkte, um Spalten zu identifizieren
column_threshold = 10 # Mindestabstand zwischen verschiedenen Spalten
columns = {}
for block in text_blocks:
x_start = block[0]
found_column = False
for col in columns.keys():
if abs(x_start - col) < column_threshold:
columns[col].append(block)
found_column = True
break
if not found_column:
columns[x_start] = [block]
# Tabellenzeilen basierend auf den identifizierten Spalten extrahieren
tables = []
for col, blocks in columns.items():
table = []
for block in sorted(blocks, key=lambda block: block[1]): # Nach Y sortieren
table.append(block[4].strip()) # Text des Blocks hinzufügen
tables.append(table)
return tables
def merge_indices(index1, index2):
"""
Merge two indices into a new index, assuming both are of the same type and dimensionality.
"""
pass
def handle_userinput(user_question):
pass
def save_uploaded_file(uploaded_file):
try:
# Create a static folder if it doesn't exist
if not os.path.exists('static'):
os.makedirs('static')
# Write the uploaded file to a new file in the static directory
with open(os.path.join('static', uploaded_file.name), "wb") as f:
f.write(uploaded_file.getbuffer())
return True
except Exception as e:
print(e)
return False
def main():
st.set_page_config(page_title="Anna Seiler Haus KI-Assistent", page_icon=":hospital:")
if True:
if "conversation" not in sst:
sst.conversation = None
if "chat_history" not in sst:
sst.chat_history = None
if "page" not in sst:
sst.page = "home"
if "openai" not in sst:
sst.openai = True
if "login" not in sst:
sst.login = False
if 'submitted_user_query' not in sst:
sst.submitted_user_query = ''
if 'submitted_user_safe' not in sst:
sst.submitted_user_safe = ''
if 'submitted_user_load' not in sst:
sst.submitted_user_load = ''
if 'widget_user_load' not in sst:
sst.widget_user_load = 'U3_alle' # Init the vectorstore
if 'vectorstore' not in sst:
sst.vectorstore = None
def submit_user_query():
sst.submitted_user_query = sst.widget_user_query
sst.widget_user_query = ''
def submit_user_safe():
sst.submitted_user_safe = sst.widget_user_safe
sst.widget_user_safe = ''
if sst.vectorstore is not None:
my_vectors.save_local(sst.vectorstore, path=sst.submitted_user_safe)
st.sidebar.success("saved")
else:
st.sidebar.warning("No embeddings to save. Please process documents first.")
def submit_user_load():
sst.submitted_user_load = sst.widget_user_load
sst.widget_user_load = ''
if os.path.exists(sst.submitted_user_load):
new_db = my_vectors.load_local(f"{sst.submitted_user_load}/faiss_index.index")
if sst.vectorstore is not None:
if new_db is not None: # Check if this is working
st.sidebar.success("Vectors loaded")
else:
if new_db is not None: # Check if this is working
sst.vectorstore = new_db
st.sidebar.success("Vectors loaded")
else:
st.sidebar.warning("Couldn't load/find embeddings")
st.header("Anna Seiler Haus KI-Assistent ASH :hospital:")
if st.toggle("show README"):
st.subheader("Funktion: ")
st.write("dieses proof-of-concept von Elia Wäfler demonstriert das Potential von RAG (Retrival Augmented Generation) für BIM2FM Dokumentenablagen am Beispiel Dokumente U3 ASH (Anna Seiler Haus, Inselspital Bern). chatte mit den Dokumenten, oder lade selber ein oder mehrere PDF-Dokumente hoch, um RAG auszuprobieren. die vektoren werden lokal oder im st.session_state gespeichert. Feedback und Bugs gerne an elia.waefler@insel.ch")
st.write("Vielen Dank.")
st.write("")
st.subheader("Licence and credits")
st.write("THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.")
st.write("special thanks to OpenAI, STREAMLIT, HUGGINGFACE, LANGCHAIN and alejandro-ao")
l, r = st.columns(2)
with l:
st.subheader("Limitationen: ")
st.write("bisher nur Text aus PDFs")
st.write("macht Fehler, kann falsche Informationen geben")
st.write("prompts werden bisher nicht geprüft")
st.write("")
with r:
st.subheader("geplante Erweiterungen:")
st.write("Tabellen, Bilder werden auch vektorisiert, um die retrival qualität zu verbessern")
st.write("on premise anwendung mit mistral 7b oder vergleichbar")
st.write("Ecodomus API einbinden, um alle Dokumente einzubinden.")
st.write("")
if sst.login:
if st.toggle("RAG / classifier"):
#user_question = st.text_input("Ask a question about your documents:", key="user_query", on_change=handle_query)
st.text_input('Ask a question about your documents:', key='widget_user_query', on_change=submit_user_query)
#sst.openai = st.toggle(label="use openai?")
if sst.submitted_user_query:
if sst.vectorstore is not None:
handle_userinput(sst.submitted_user_query)
sst.submitted_user_query = False
else:
st.warning("no vectorstore loaded.")
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
vec = ingest.get_text_chunks(ingest.get_pdf_text(pdf_docs))
st.warning("only text")
sst.vectorstore = vec
sst.conversation = vec
st.success("embedding complete")
st.text_input('Safe Embeddings to: (copy path of folder)', key='widget_user_safe',
on_change=submit_user_safe)
st.text_input('Load Embeddings from: (copy path of folder)', key='widget_user_load',
on_change=submit_user_load)
if st.toggle("reset vectorstore?"):
if st.button("Yes, reset"):
sst.vectorstore = None
st.warning("vectorstore reset complete")
else:
st.warning("unsaved embeddings will be lost.")
else:
#vec_store = setup_db.load_vectorstore_from_excel("data/KBOB_Klassifizierung.xlsx")
#my_1_writer.safe_my_dict_as_json("data/KBOB_klassen_codes.json", vec_store)
vec_store = read_json_file("data/KBOB_klassen_codes.json")
sst.page = "home"
file = st.file_uploader("upload file", accept_multiple_files=False)
if st.button("classify me!"):
with st.spinner("Classifying..."):
query_vecs = []
if file.type == "application/pdf":
one, two, three, four, five = st.columns(5)
text = ingest.get_pdf_text(file)
with one:
st.success("text")
# ONE FILE ONLY OR MULTIPLE AT THE SAME TIME?
images = ingest.get_pdf_images(file.getvalue())
if type(images) != list:
images = [images]
for img in images:
text += my_new_openai.img_to_text(img_base64=my_new_openai.image_bytes_to_base64(img))
with two:
st.success("images")
tabs = ingest.get_pdf_tables(file.getvalue())
if type(tabs) != list:
tabs = [tabs]
for tab in tabs:
text += my_new_openai.table_to_text(table=tab)
with three:
st.success("tabs")
# ONE VECTOR PER PDF OR MULTIPLE (CHUNKS IMGS ...) IS THE QUESTION
full_search = my_new_openai.vectorize_data(text)
detail_search = [my_new_openai.vectorize_data(_) for _ in ingest.get_text_chunks(text)]
with four:
st.success("embedded document")
st.write(len(list(vec_store.keys())))
with one:
sorted_vec_table = my_2_sim_search.sim_search_fly(
vec_table=vec_store, term=full_search)
st.write(f"len of list of categories {len(list(sorted_vec_table.keys()))}")
st.write(f"the most fitting category is {next(iter(sorted_vec_table))}")
with two:
sorted_vecs_two = my_2_sim_search.sim_search_fly(
vec_table=read_json_file("vecs/Fachbereiche_vecs.json"), term=full_search)
st.write(f"len of list of categories {len(list(sorted_vecs_two.keys()))}")
st.write(f"the most fitting Fachbereich is {next(iter(sorted_vecs_two))}")
with three:
sorted_vecs_three = my_2_sim_search.sim_search_fly(
vec_table=read_json_file("vecs/SIA-PHASEN 1-5 OUTPUT_vecs.json"), term=full_search)
st.write(f"len of list of categories {len(list(sorted_vecs_three.keys()))}")
st.write(f"the most fitting SIA-Phase is {next(iter(sorted_vecs_three))}")
for vec in detail_search:
pass
with four:
st.success("classification complete")
else:
st.error()
else:
user_pw = st.text_input("ASK_ASH_PASSWORD: ", type="password")
if st.button("check"):
time.sleep(0.5)
if user_pw == ASK_ASH_PASSWORD:
sst.login = True
if "first_load" not in sst:
submit_user_load()
sst.first_load = True
st.rerun()
if __name__ == '__main__':
if True:
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"]
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
sst = st.session_state
ASK_ASH_PASSWORD = os.environ["ASK_ASH_PASSWORD"]
main()