Spaces:
Sleeping
Sleeping
elia-waefler
commited on
Commit
•
3bd2065
1
Parent(s):
2c3613b
Upload 4 files
Browse files- README.md +68 -13
- app.py +238 -0
- html_templates.py +44 -0
- requirements.txt +10 -0
README.md
CHANGED
@@ -1,13 +1,68 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Project Name
|
2 |
+
This repository contains the trained model and scripts for [brief description of what the model does or its purpose]. This model is designed to [describe applications or what the model can be used for, like generating text, classifying images, etc.].
|
3 |
+
|
4 |
+
Model Description
|
5 |
+
[Provide a detailed description of the model, including the architecture, training data, and any significant features that highlight its uniqueness or capabilities.]
|
6 |
+
|
7 |
+
Features
|
8 |
+
Feature 1: [Description]
|
9 |
+
Feature 2: [Description]
|
10 |
+
Feature 3: [Description]
|
11 |
+
Installation
|
12 |
+
To use this model, you first need to install the required packages. Run the following command:
|
13 |
+
|
14 |
+
bash
|
15 |
+
Copy code
|
16 |
+
pip install -r requirements.txt
|
17 |
+
Usage
|
18 |
+
Here's how to use the model in your project:
|
19 |
+
|
20 |
+
python
|
21 |
+
Copy code
|
22 |
+
from transformers import AutoModel, AutoTokenizer
|
23 |
+
|
24 |
+
model_name = "your-huggingface-model-identifier"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModel.from_pretrained(model_name)
|
27 |
+
|
28 |
+
def predict(text):
|
29 |
+
inputs = tokenizer(text, return_tensors="pt")
|
30 |
+
with torch.no_grad():
|
31 |
+
logits = model(**inputs).logits
|
32 |
+
predicted_class_id = logits.argmax().item()
|
33 |
+
return model.config.id2label[predicted_class_id]
|
34 |
+
|
35 |
+
# Example usage
|
36 |
+
text = "Your example text here"
|
37 |
+
print(predict(text))
|
38 |
+
Performance
|
39 |
+
Discuss the performance metrics, benchmarks, or comparisons here, showing how the model performs in various scenarios.
|
40 |
+
|
41 |
+
Contributing
|
42 |
+
We welcome contributions to improve the model or scripts. Please follow these steps to contribute:
|
43 |
+
|
44 |
+
Fork the repository.
|
45 |
+
Create a new branch (git checkout -b feature-branch).
|
46 |
+
Commit your changes (git commit -am 'Add some feature').
|
47 |
+
Push to the branch (git push origin feature-branch).
|
48 |
+
Open a new Pull Request.
|
49 |
+
License
|
50 |
+
This project is licensed under the [choose a license] - see the LICENSE file for details.
|
51 |
+
|
52 |
+
Citation
|
53 |
+
If you use this model in your research, please cite it as follows:
|
54 |
+
|
55 |
+
bibtex
|
56 |
+
Copy code
|
57 |
+
@inproceedings{author2023model,
|
58 |
+
title={Title of Your Model},
|
59 |
+
author={Author Names},
|
60 |
+
booktitle={Where it was published},
|
61 |
+
year={2023}
|
62 |
+
}
|
63 |
+
Acknowledgments
|
64 |
+
Mention any advisors, financial supporters, or data providers.
|
65 |
+
Any other recognition or credits.
|
66 |
+
Contact
|
67 |
+
For issues, questions, or collaborations, you can contact [email contact] or create an issue in this repository.
|
68 |
+
|
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
stores vectores in session state, or locally.
|
3 |
+
loading from local does not yet work.
|
4 |
+
load funciton must recieve the uploaded file from fileuploader.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import time
|
8 |
+
from datetime import datetime
|
9 |
+
import openai
|
10 |
+
import tiktoken
|
11 |
+
import streamlit as st
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
+
from langchain.text_splitter import CharacterTextSplitter
|
14 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
+
from langchain.chat_models import ChatOpenAI
|
17 |
+
from langchain.memory import ConversationBufferMemory
|
18 |
+
from langchain.chains import ConversationalRetrievalChain
|
19 |
+
from html_templates import css, bot_template, user_template
|
20 |
+
from langchain.llms import HuggingFaceHub
|
21 |
+
import os
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
|
25 |
+
def merge_faiss_indices(index1, index2):
|
26 |
+
"""
|
27 |
+
Merge two FAISS indices into a new index, assuming both are of the same type and dimensionality.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
index1 (faiss.Index): The first FAISS index.
|
31 |
+
index2 (faiss.Index): The second FAISS index.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
faiss.Index: A new FAISS index containing all vectors from index1 and index2.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Check if both indices are the same type
|
38 |
+
if type(index1) != type(index2):
|
39 |
+
raise ValueError("Indices are of different types")
|
40 |
+
|
41 |
+
# Check dimensionality
|
42 |
+
if index1.d != index2.d:
|
43 |
+
raise ValueError("Indices have different dimensionality")
|
44 |
+
|
45 |
+
# Determine type of indices
|
46 |
+
if isinstance(index1, FAISS.IndexFlatL2):
|
47 |
+
# Handle simple flat indices
|
48 |
+
d = index1.d
|
49 |
+
# Extract vectors from both indices
|
50 |
+
xb1 = FAISS.rev_swig_ptr(index1.xb.data(), index1.ntotal * d)
|
51 |
+
xb2 = FAISS.rev_swig_ptr(index2.xb.data(), index2.ntotal * d)
|
52 |
+
|
53 |
+
# Combine vectors
|
54 |
+
xb_combined = np.vstack((xb1, xb2))
|
55 |
+
|
56 |
+
# Create a new index and add combined vectors
|
57 |
+
new_index = FAISS.IndexFlatL2(d)
|
58 |
+
new_index.add(xb_combined)
|
59 |
+
return new_index
|
60 |
+
|
61 |
+
elif isinstance(index1, FAISS.IndexIVFFlat):
|
62 |
+
# Handle quantized indices (IndexIVFFlat)
|
63 |
+
d = index1.d
|
64 |
+
nlist = index1.nlist
|
65 |
+
quantizer = FAISS.IndexFlatL2(d) # Re-create the appropriate quantizer
|
66 |
+
|
67 |
+
# Create a new index with the same configuration
|
68 |
+
new_index = FAISS.IndexIVFFlat(quantizer, d, nlist, FAISS.METRIC_L2)
|
69 |
+
|
70 |
+
# If the indices are already trained, you can directly add the vectors
|
71 |
+
# Otherwise, you may need to train new_index using a representative subset of vectors
|
72 |
+
vecs1 = FAISS.rev_swig_ptr(index1.xb.data(), index1.ntotal * d)
|
73 |
+
vecs2 = FAISS.rev_swig_ptr(index2.xb.data(), index2.ntotal * d)
|
74 |
+
new_index.add(vecs1)
|
75 |
+
new_index.add(vecs2)
|
76 |
+
return new_index
|
77 |
+
|
78 |
+
else:
|
79 |
+
raise TypeError("Index type not supported for merging in this function")
|
80 |
+
|
81 |
+
|
82 |
+
def get_pdf_text(pdf_docs):
|
83 |
+
text = ""
|
84 |
+
for pdf in pdf_docs:
|
85 |
+
pdf_reader = PdfReader(pdf)
|
86 |
+
for page in pdf_reader.pages:
|
87 |
+
text += page.extract_text()
|
88 |
+
return text
|
89 |
+
|
90 |
+
|
91 |
+
def get_text_chunks(text):
|
92 |
+
text_splitter = CharacterTextSplitter(
|
93 |
+
separator="\n",
|
94 |
+
chunk_size=1000,
|
95 |
+
chunk_overlap=200,
|
96 |
+
length_function=len
|
97 |
+
)
|
98 |
+
chunks = text_splitter.split_text(text)
|
99 |
+
return chunks
|
100 |
+
|
101 |
+
|
102 |
+
def get_faiss_vectorstore(text_chunks):
|
103 |
+
if st.session_state.openai:
|
104 |
+
my_embeddings = OpenAIEmbeddings()
|
105 |
+
else:
|
106 |
+
my_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
107 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=my_embeddings)
|
108 |
+
return vectorstore
|
109 |
+
|
110 |
+
|
111 |
+
def get_conversation_chain(vectorstore):
|
112 |
+
if st.session_state.openai:
|
113 |
+
llm = ChatOpenAI()
|
114 |
+
else:
|
115 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
|
116 |
+
|
117 |
+
memory = ConversationBufferMemory(
|
118 |
+
memory_key='chat_history', return_messages=True)
|
119 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
120 |
+
llm=llm,
|
121 |
+
retriever=vectorstore.as_retriever(),
|
122 |
+
memory=memory
|
123 |
+
)
|
124 |
+
return conversation_chain
|
125 |
+
|
126 |
+
|
127 |
+
def handle_userinput(user_question):
|
128 |
+
response = st.session_state.conversation({'question': user_question})
|
129 |
+
st.session_state.chat_history = response['chat_history']
|
130 |
+
|
131 |
+
for i, message in enumerate(st.session_state.chat_history):
|
132 |
+
# Display user message
|
133 |
+
if i % 2 == 0:
|
134 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
135 |
+
else:
|
136 |
+
print(message)
|
137 |
+
# Display AI response
|
138 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
139 |
+
# Display source document information if available in the message
|
140 |
+
if hasattr(message, 'source') and message.source:
|
141 |
+
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
142 |
+
|
143 |
+
def set_global_variables():
|
144 |
+
global BASE_URL
|
145 |
+
BASE_URL = "https://api.vectara.io/v1"
|
146 |
+
global OPENAI_API_KEY
|
147 |
+
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
148 |
+
global OPENAI_ORG_ID
|
149 |
+
OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"]
|
150 |
+
global PINECONE_API_KEY
|
151 |
+
PINECONE_API_KEY = os.environ["PINECONE_API_KEY_LCBIM"]
|
152 |
+
global HUGGINGFACEHUB_API_TOKEN
|
153 |
+
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
154 |
+
global VECTARA_API_KEY
|
155 |
+
VECTARA_API_KEY = os.environ["VECTARA_API_KEY"]
|
156 |
+
global VECTARA_CUSTOMER_ID
|
157 |
+
VECTARA_CUSTOMER_ID = os.environ["VECTARA_CUSTOMER_ID"]
|
158 |
+
global headers
|
159 |
+
headers = {"Authorization": f"Bearer {VECTARA_API_KEY}", "Content-Type": "application/json"}
|
160 |
+
|
161 |
+
|
162 |
+
def main():
|
163 |
+
set_global_variables()
|
164 |
+
st.set_page_config(page_title="Anna Seiler Haus KI-Assistent", page_icon=":hospital:")
|
165 |
+
st.write(css, unsafe_allow_html=True)
|
166 |
+
if "conversation" not in st.session_state:
|
167 |
+
st.session_state.conversation = None
|
168 |
+
if "chat_history" not in st.session_state:
|
169 |
+
st.session_state.chat_history = None
|
170 |
+
if "page" not in st.session_state:
|
171 |
+
st.session_state.page = "home"
|
172 |
+
if "openai" not in st.session_state:
|
173 |
+
st.session_state.openai = True
|
174 |
+
if "login" not in st.session_state:
|
175 |
+
st.session_state.login = False
|
176 |
+
|
177 |
+
st.header("Anna Seiler Haus KI-Assistent ASH :hospital:")
|
178 |
+
if st.text_input("ASK_ASH_PASSWORD: ", type="password") == ASK_ASH_PASSWORD:
|
179 |
+
if True:
|
180 |
+
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
181 |
+
# ASK_ASH_PASSWORD = False
|
182 |
+
OPENAI_API_KEY = False
|
183 |
+
OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"]
|
184 |
+
PINECONE_API_KEY = os.environ["PINECONE_API_KEY_LCBIM"]
|
185 |
+
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
186 |
+
VECTARA_CORPUS_ID = "3"
|
187 |
+
VECTARA_API_KEY = os.environ["VECTARA_API_KEY"]
|
188 |
+
VECTARA_CUSTOMER_ID = os.environ["VECTARA_CUSTOMER_ID"]
|
189 |
+
|
190 |
+
user_question = st.text_input("Ask a question about your documents:")
|
191 |
+
|
192 |
+
st.session_state.openai = st.toggle(label="use openai?")
|
193 |
+
# if st.session_state.openai:
|
194 |
+
# st.session_state.openai_key = st.text_input("openai api key", type="password")
|
195 |
+
# OPENAI_API_KEY = st.session_state.openai_key
|
196 |
+
|
197 |
+
if user_question:
|
198 |
+
handle_userinput(user_question)
|
199 |
+
|
200 |
+
with st.sidebar:
|
201 |
+
st.subheader("Your documents")
|
202 |
+
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
203 |
+
if st.button("Process"):
|
204 |
+
with st.spinner("Processing"):
|
205 |
+
raw_text = get_pdf_text(pdf_docs)
|
206 |
+
text_chunks = get_text_chunks(raw_text)
|
207 |
+
vec = get_faiss_vectorstore(text_chunks)
|
208 |
+
st.session_state.vectorstore = vec
|
209 |
+
st.session_state.conversation = get_conversation_chain(vec)
|
210 |
+
|
211 |
+
# Save and Load Embeddings
|
212 |
+
if st.button("Save Embeddings"):
|
213 |
+
if "vectorstore" in st.session_state:
|
214 |
+
st.session_state.vectorstore.save_local(str(datetime.now().strftime("%Y%m%d%H%M%S")) + "faiss_index")
|
215 |
+
st.sidebar.success("saved")
|
216 |
+
else:
|
217 |
+
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
218 |
+
|
219 |
+
if st.button("Load Embeddings"):
|
220 |
+
if "vectorstore" in st.session_state:
|
221 |
+
new_db = FAISS.load_local()
|
222 |
+
if new_db is not None: # Check if this is working
|
223 |
+
combined_db = merge_faiss_indices(new_db, st.session_state.vectorstore)
|
224 |
+
st.session_state.vectorstore = combined_db
|
225 |
+
st.session_state.conversation = get_conversation_chain(combined_db)
|
226 |
+
else:
|
227 |
+
st.sidebar.warning("Couldn't load embeddings")
|
228 |
+
else:
|
229 |
+
new_db = FAISS.load_local("faiss_index")
|
230 |
+
if new_db is not None: # Check if this is working
|
231 |
+
st.session_state.vectorstore = new_db
|
232 |
+
st.session_state.conversation = get_conversation_chain(new_db)
|
233 |
+
|
234 |
+
|
235 |
+
if __name__ == '__main__':
|
236 |
+
set_global_variables()
|
237 |
+
ASK_ASH_PASSWORD = os.environ["ASK_ASH_PASSWORD"]
|
238 |
+
main()
|
html_templates.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
css = '''
|
2 |
+
<style>
|
3 |
+
.chat-message {
|
4 |
+
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
5 |
+
}
|
6 |
+
.chat-message.user {
|
7 |
+
background-color: #2b313e
|
8 |
+
}
|
9 |
+
.chat-message.bot {
|
10 |
+
background-color: #475063
|
11 |
+
}
|
12 |
+
.chat-message .avatar {
|
13 |
+
width: 20%;
|
14 |
+
}
|
15 |
+
.chat-message .avatar img {
|
16 |
+
max-width: 78px;
|
17 |
+
max-height: 78px;
|
18 |
+
border-radius: 50%;
|
19 |
+
object-fit: cover;
|
20 |
+
}
|
21 |
+
.chat-message .message {
|
22 |
+
width: 80%;
|
23 |
+
padding: 0 1.5rem;
|
24 |
+
color: #fff;
|
25 |
+
}
|
26 |
+
'''
|
27 |
+
|
28 |
+
bot_template = '''
|
29 |
+
<div class="chat-message bot">
|
30 |
+
<div class="avatar">
|
31 |
+
<img src="https://www.insel.ch/_ari/115280/49841742b8afbc44928918244fb4c6f9b487d5b3/9f6e35f65cbd0d6c47c145f90b1d5a297eb50bcd/1400/0/og/20230704-Anna-Seiler-Haus-009-screen.jpg.webp" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
32 |
+
</div>
|
33 |
+
<div class="message">{{MSG}}</div>
|
34 |
+
</div>
|
35 |
+
'''
|
36 |
+
|
37 |
+
user_template = '''
|
38 |
+
<div class="chat-message user">
|
39 |
+
<div class="avatar">
|
40 |
+
<img src="https://media.licdn.com/dms/image/C4D03AQHi5rJfheyUtQ/profile-displayphoto-shrink_800_800/0/1638174649461?e=2147483647&v=beta&t=KOsttcLGIwB9pBEVfceHj-ckv_zPHs-2COyrp7aYR-k">
|
41 |
+
</div>
|
42 |
+
<div class="message">{{MSG}}</div>
|
43 |
+
</div>
|
44 |
+
'''
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit~=1.33.0
|
2 |
+
bcrypt~=4.1.2
|
3 |
+
psycopg2-binary~=2.9.9
|
4 |
+
openai~=1.23.2
|
5 |
+
pypdf2~=3.0.1
|
6 |
+
langchain~=0.1.16
|
7 |
+
tiktoken~=0.6.0
|
8 |
+
numpy~=1.26.4
|
9 |
+
requests~=2.31.0
|
10 |
+
faiss-cpu
|