update: Create a retreival app.
Browse files- app.py +57 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch as t
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
from time import perf_counter as timer
|
6 |
+
|
7 |
+
def load_data(database_file):
|
8 |
+
df = pd.read_parquet(database_file)
|
9 |
+
chunk_embeddings = t.zeros((df.__len__(), 768))
|
10 |
+
for idx in range(len(chunk_embeddings)):
|
11 |
+
chunk_embeddings[idx] = t.tensor(df.loc[df.index[idx], "chunk_embeddings"])
|
12 |
+
return df, chunk_embeddings
|
13 |
+
|
14 |
+
def main():
|
15 |
+
st.title("Semantic Text Retrieval App")
|
16 |
+
|
17 |
+
# Select device
|
18 |
+
device = "cuda" if t.cuda.is_available() else "cpu"
|
19 |
+
st.write(f"Using device: {device}")
|
20 |
+
|
21 |
+
# Load embedding model
|
22 |
+
embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device=device)
|
23 |
+
|
24 |
+
# File upload for the database
|
25 |
+
database_file = st.file_uploader("Upload the Parquet database file", type=["parquet"])
|
26 |
+
|
27 |
+
if database_file is not None:
|
28 |
+
df, chunk_embeddings = load_data(database_file)
|
29 |
+
st.success("Database loaded successfully!")
|
30 |
+
|
31 |
+
query = st.text_area("Enter your query:")
|
32 |
+
|
33 |
+
if st.button("Search") and query:
|
34 |
+
query_embedding = embedding_model.encode(query)
|
35 |
+
|
36 |
+
# Compute dot product scores
|
37 |
+
start_time = timer()
|
38 |
+
dot_scores = util.dot_score(query_embedding, chunk_embeddings)[0]
|
39 |
+
end_time = timer()
|
40 |
+
|
41 |
+
st.write(f"Time taken to compute scores: {end_time - start_time:.5f} seconds")
|
42 |
+
|
43 |
+
# Get top results
|
44 |
+
top_k = st.slider("Select number of top results to display", min_value=1, max_value=10, value=5)
|
45 |
+
top_results_dot_product = t.topk(dot_scores, k=top_k)
|
46 |
+
|
47 |
+
st.subheader("Query Results")
|
48 |
+
st.write(f"Query: {query}")
|
49 |
+
|
50 |
+
for score, idx in zip(top_results_dot_product[0], top_results_dot_product[1]):
|
51 |
+
st.write(f"### Score: {score:.4f}")
|
52 |
+
st.write(f"**Text:** {df.iloc[int(idx)]["ext"]}")
|
53 |
+
st.write(f"**Number of tokens:** {df.iloc[int(idx)]['tokens']}")
|
54 |
+
st.write("---")
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pandas
|
3 |
+
sentence-transformers
|