Spaces:
Runtime error
Runtime error
Lazy load
Browse files
app.py
CHANGED
|
@@ -1,17 +1,11 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import re
|
| 4 |
import tldextract
|
| 5 |
from rapidfuzz import fuzz
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
classifier = pipeline("zero-shot-classification", model="joeddav/distilbert-base-uncased-go-emotions")
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Define categories
|
| 12 |
LABELS = ["urgent", "fear", "authority", "financial scam", "safe"]
|
| 13 |
|
| 14 |
-
# Regex backup cues
|
| 15 |
CUES = {
|
| 16 |
"urgency": [r"\burgent\b", r"\bimmediately\b", r"\bverify now\b", r"\blimited time\b"],
|
| 17 |
"fear": [r"\bsuspended\b", r"\block(ed)?\b", r"\blegal action\b", r"\bunauthorized\b"],
|
|
@@ -23,9 +17,23 @@ TRUSTED_DOMAINS = ["google.com", "paypal.com", "microsoft.com", "amazon.com", "f
|
|
| 23 |
SUSPICIOUS_TLDS = ["xyz", "top", "tk", "gq", "cf", "ml"]
|
| 24 |
URL_PATTERN = re.compile(r"(https?://[^\s]+|www\.[^\s]+|\b[a-zA-Z0-9-]+\.[a-z]{2,}\b)")
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def regex_analysis(text):
|
| 28 |
-
findings
|
|
|
|
| 29 |
for category, patterns in CUES.items():
|
| 30 |
for pat in patterns:
|
| 31 |
if re.search(pat, text, re.IGNORECASE):
|
|
@@ -33,9 +41,9 @@ def regex_analysis(text):
|
|
| 33 |
score += 20
|
| 34 |
return score, findings
|
| 35 |
|
| 36 |
-
|
| 37 |
def huggingface_analysis(text):
|
| 38 |
-
|
|
|
|
| 39 |
label_scores = list(zip(result["labels"], result["scores"]))
|
| 40 |
label_scores.sort(key=lambda x: x[1], reverse=True)
|
| 41 |
|
|
@@ -45,9 +53,9 @@ def huggingface_analysis(text):
|
|
| 45 |
|
| 46 |
return hf_score, findings
|
| 47 |
|
| 48 |
-
|
| 49 |
def url_analysis(url):
|
| 50 |
-
findings
|
|
|
|
| 51 |
ext = tldextract.extract(url)
|
| 52 |
domain = f"{ext.domain}.{ext.suffix}"
|
| 53 |
|
|
@@ -72,13 +80,11 @@ def url_analysis(url):
|
|
| 72 |
|
| 73 |
return score, findings
|
| 74 |
|
| 75 |
-
|
| 76 |
def extract_url_from_text(text):
|
| 77 |
match = URL_PATTERN.search(text)
|
| 78 |
return match.group(0) if match else None
|
| 79 |
|
| 80 |
-
|
| 81 |
-
# Main analysis function (Gradio will call this)
|
| 82 |
def analyze(text):
|
| 83 |
regex_score, regex_findings = regex_analysis(text)
|
| 84 |
hf_score, hf_findings = huggingface_analysis(text)
|
|
@@ -105,18 +111,22 @@ def analyze(text):
|
|
| 105 |
return {
|
| 106 |
"Score": total_score,
|
| 107 |
"Risk Level": risk_level,
|
| 108 |
-
"Reasons": reasons,
|
| 109 |
"Extracted URL": url if url else "None detected"
|
| 110 |
}
|
| 111 |
|
| 112 |
-
|
| 113 |
-
# Gradio UI
|
| 114 |
iface = gr.Interface(
|
| 115 |
fn=analyze,
|
| 116 |
-
inputs=gr.Textbox(lines=
|
| 117 |
-
outputs=
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import tldextract
|
| 3 |
from rapidfuzz import fuzz
|
| 4 |
+
import gradio as gr
|
| 5 |
|
| 6 |
+
# --- Labels & Regex ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
LABELS = ["urgent", "fear", "authority", "financial scam", "safe"]
|
| 8 |
|
|
|
|
| 9 |
CUES = {
|
| 10 |
"urgency": [r"\burgent\b", r"\bimmediately\b", r"\bverify now\b", r"\blimited time\b"],
|
| 11 |
"fear": [r"\bsuspended\b", r"\block(ed)?\b", r"\blegal action\b", r"\bunauthorized\b"],
|
|
|
|
| 17 |
SUSPICIOUS_TLDS = ["xyz", "top", "tk", "gq", "cf", "ml"]
|
| 18 |
URL_PATTERN = re.compile(r"(https?://[^\s]+|www\.[^\s]+|\b[a-zA-Z0-9-]+\.[a-z]{2,}\b)")
|
| 19 |
|
| 20 |
+
# --- Lazy-load Hugging Face model ---
|
| 21 |
+
classifier = None
|
| 22 |
+
def get_classifier():
|
| 23 |
+
global classifier
|
| 24 |
+
if classifier is None:
|
| 25 |
+
from transformers import pipeline
|
| 26 |
+
classifier = pipeline(
|
| 27 |
+
"zero-shot-classification",
|
| 28 |
+
model="valhalla/distilbart-mnli-12-1",
|
| 29 |
+
device=-1 # CPU
|
| 30 |
+
)
|
| 31 |
+
return classifier
|
| 32 |
+
|
| 33 |
+
# --- Analysis functions ---
|
| 34 |
def regex_analysis(text):
|
| 35 |
+
findings = []
|
| 36 |
+
score = 0
|
| 37 |
for category, patterns in CUES.items():
|
| 38 |
for pat in patterns:
|
| 39 |
if re.search(pat, text, re.IGNORECASE):
|
|
|
|
| 41 |
score += 20
|
| 42 |
return score, findings
|
| 43 |
|
|
|
|
| 44 |
def huggingface_analysis(text):
|
| 45 |
+
clf = get_classifier()
|
| 46 |
+
result = clf(text, LABELS)
|
| 47 |
label_scores = list(zip(result["labels"], result["scores"]))
|
| 48 |
label_scores.sort(key=lambda x: x[1], reverse=True)
|
| 49 |
|
|
|
|
| 53 |
|
| 54 |
return hf_score, findings
|
| 55 |
|
|
|
|
| 56 |
def url_analysis(url):
|
| 57 |
+
findings = []
|
| 58 |
+
score = 0
|
| 59 |
ext = tldextract.extract(url)
|
| 60 |
domain = f"{ext.domain}.{ext.suffix}"
|
| 61 |
|
|
|
|
| 80 |
|
| 81 |
return score, findings
|
| 82 |
|
|
|
|
| 83 |
def extract_url_from_text(text):
|
| 84 |
match = URL_PATTERN.search(text)
|
| 85 |
return match.group(0) if match else None
|
| 86 |
|
| 87 |
+
# --- Main analyze function for Gradio ---
|
|
|
|
| 88 |
def analyze(text):
|
| 89 |
regex_score, regex_findings = regex_analysis(text)
|
| 90 |
hf_score, hf_findings = huggingface_analysis(text)
|
|
|
|
| 111 |
return {
|
| 112 |
"Score": total_score,
|
| 113 |
"Risk Level": risk_level,
|
| 114 |
+
"Reasons": "\n".join(reasons),
|
| 115 |
"Extracted URL": url if url else "None detected"
|
| 116 |
}
|
| 117 |
|
| 118 |
+
# --- Gradio Interface ---
|
|
|
|
| 119 |
iface = gr.Interface(
|
| 120 |
fn=analyze,
|
| 121 |
+
inputs=gr.Textbox(lines=5, placeholder="Paste text here..."),
|
| 122 |
+
outputs=[
|
| 123 |
+
gr.Textbox(label="Score"),
|
| 124 |
+
gr.Textbox(label="Risk Level"),
|
| 125 |
+
gr.Textbox(label="Reasons"),
|
| 126 |
+
gr.Textbox(label="Extracted URL")
|
| 127 |
+
],
|
| 128 |
+
title="Phishing / Scam Detector",
|
| 129 |
+
description="Analyzes text for urgency, fear, authority, and financial scam cues, plus suspicious URLs."
|
| 130 |
)
|
| 131 |
|
| 132 |
if __name__ == "__main__":
|