JAK_ML / pages /1_JAK.py
eikoenchine's picture
Upload 137 files
5b07bd4
import streamlit as st
from rdkit.Chem import MACCSkeys
from rdkit import Chem
import numpy as np
import pandas as pd
import xgboost as xgb
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset
import torch.utils.data
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
import os
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import classification_report, confusion_matrix, average_precision_score, roc_auc_score
model_path = 'model/'
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset
import torch.utils.data
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
from torch_geometric.nn import GATConv, RGCNConv, GCNConv, global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from sklearn.metrics import f1_score, accuracy_score, average_precision_score, roc_auc_score
import rdkit
from rdkit.Chem.Scaffolds import MurckoScaffold
from itertools import compress
import random
from collections import defaultdict
if torch.cuda.is_available():
map_location=lambda storage, loc: storage.cuda()
else:
map_location='cpu'
import torch
from torch_geometric.nn import GATConv, RGCNConv, GCNConv, global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from sklearn.metrics import f1_score, accuracy_score, average_precision_score, roc_auc_score, classification_report, confusion_matrix
from sklearn.model_selection import KFold, train_test_split
import rdkit
from rdkit.Chem.Scaffolds import MurckoScaffold
from transformers import AutoModelWithLMHead, AutoTokenizer
import math
# from itertools import compress
# import random
# from collections import defaultdict
import pickle
device = 'cpu'
model_path = 'model/'
adj_max=80
fps_len=167
max_len=120
vocabulary = {'C': 1, 'c': 2, '1': 3, '(': 4, '-': 5, '2': 6, 's': 7, 'N': 8, '=': 9, ')': 10, 'n': 11, '[': 12,
'@': 13,
'H': 14, ']': 15, 'O': 16, 'S': 17, '3': 18, 'l': 19, 'B': 20, 'r': 21, '/': 22, '\\': 23, 'o': 24,
'4': 25,
'5': 26, '6': 27, '7': 28, '+': 29, '.': 30, 'I': 31, 'F': 32, '8': 33, '#': 34, 'P': 35, '9': 36,
'a': 37,
'%': 38, '0': 39, 'i': 40, 'e': 41, 'L': 42, 'K': 43, 't': 44, 'T': 45, 'A': 46, 'g': 47, 'Z': 48,
'M': 49,
'R': 50, 'p': 51, 'b': 52, 'X': 53}
known_drugs = ['O=C(NCCC(O)=O)C(C=C1)=CC=C1/N=N/C(C=C2C(O)=O)=CC=C2OCCOC3=CC=C(NC4=NC=C(C)C(NC5=CC=CC(S(NC(C)(C)C)(=O)=O)=C5)=N4)C=C3',
'OCCOC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1',
'C1CCC(C1)C(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3',
'CC1CCN(CC1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N',
'CCS(=O)(=O)N1CC(C1)(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3',
'C1CC1C(=O)NC2=NN3C(=N2)C=CC=C3C4=CC=C(C=C4)CN5CCS(=O)(=O)CC5',
'CCC1CN(CC1C2=CN=C3N2C4=C(NC=C4)N=C3)C(=O)NCC(F)(F)F',
'OC(COC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1)=O',
'O=C(NCCC(O)=O)C(C=C1)=CC=C1/N=N/C(C=C2C(O)=O)=CC=C2OCCOC3=CC=C(NC4=NC=C(C)C(NC5=CC=CC(S(N)(=O)=O)=C5)=N4)C=C3',
'OC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(NC(C)(C)C)(=O)=O)=C3)=N2)C=C1',
'OCCOC1=CC=C(NC2=NC=C(C)C(NC3=CC=CC(S(N)(=O)=O)=C3)=N2)C=C1',
'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4',
'C1CCN(C1)CCOC2=C3COCC=CCOCC4=CC(=CC=C4)C5=NC(=NC=C5)NC(=C3)C=C2']
device = torch.device('cpu')
class jak_dataset(Dataset):
def __init__(self, dataframe, max_len=80):
super(jak_dataset, self).__init__()
self.len = len(dataframe)
self.dataframe = dataframe
self.max_len = max_len
def __getitem__(self, idx):
y = 1 if self.dataframe.Activity[idx]==1 else 0
X = torch.zeros(self.max_len)
for idx, atom in enumerate(list(self.dataframe.Smiles[idx])[:self.max_len]):
X[idx] = vocabulary[atom]
return X.long(), y
def __len__(self):
return self.len
class encoder(nn.Module):
def __init__(self, input_length, num_words, embedding_size=32, inner_size=32, output_size=fps_len, stride=1):
super(encoder, self).__init__()
self.input_length = input_length
self.num_words = num_words
self.embedding_size = embedding_size
self.inner_size = inner_size
self.output_size = output_size
self.stride = stride
self.embedding = nn.Embedding(self.num_words + 1, self.embedding_size, padding_idx=0)
self.conv_1 = nn.Conv1d(self.embedding_size, self.inner_size, 1, self.stride)
self.conv_2 = nn.Conv1d(self.embedding_size, self.inner_size, 2, self.stride)
self.conv_3 = nn.Conv1d(self.embedding_size, self.inner_size, 3, self.stride)
self.w = nn.Linear(self.inner_size * 3, self.output_size)
self.activation = nn.LeakyReLU()
self.dropout = nn.Dropout(0.25)
self.init_weights()
def init_weights(self):
torch.nn.init.xavier_uniform_(self.conv_1.weight)
torch.nn.init.xavier_uniform_(self.conv_2.weight)
torch.nn.init.xavier_uniform_(self.conv_3.weight)
torch.nn.init.xavier_uniform_(self.w.weight)
torch.nn.init.xavier_uniform_(self.embedding.weight)
def forward(self, x):
x = self.embedding(x).permute(0, 2, 1)
tri = self.conv_3(x)
bi = self.conv_2(x)
uni = self.conv_1(x)
tri_maxpool = nn.MaxPool1d(tri.shape[2])
bi_maxpool = nn.MaxPool1d(bi.shape[2])
uni_maxpool = nn.MaxPool1d(uni.shape[2])
integrate_feat = torch.cat(
(tri_maxpool(tri).squeeze(2), bi_maxpool(bi).squeeze(2), uni_maxpool(uni).squeeze(2)), dim=1)
#print(integrate_feat.shape)
return self.w(self.activation(integrate_feat))
def generate_scaffold(smiles, include_chirality=False):
"""
Obtain Bemis-Murcko scaffold from smiles
:param smiles:
:param include_chirality:
:return: smiles of scaffold
"""
scaffold = MurckoScaffold.MurckoScaffoldSmiles(
smiles=smiles, includeChirality=include_chirality
)
return scaffold
def random_scaffold_split(
dataset,
smiles_list,
task_idx=None,
null_value=0,
frac_train=0.8,
frac_valid=0.1,
frac_test=0.1,
seed=42,
):
"""
Adapted from https://github.com/pfnet-research/chainer-chemistry/blob/master/\
chainer_chemistry/dataset/splitters/scaffold_splitter.py
Split dataset by Bemis-Murcko scaffolds
This function can also ignore examples containing null values for a
selected task when splitting. Deterministic split
:param dataset: pytorch geometric dataset obj
:param smiles_list: list of smiles corresponding to the dataset obj
:param task_idx: column idx of the data.y tensor. Will filter out
examples with null value in specified task column of the data.y tensor
prior to splitting. If None, then no filtering
:param null_value: float that specifies null value in data.y to filter if
task_idx is provided
:param frac_train:
:param frac_valid:
:param frac_test:
:param seed;
:return: train, valid, test slices of the input dataset obj
"""
np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.0)
if task_idx is not None:
# filter based on null values in task_idx
# get task array
y_task = np.array([data.y[task_idx].item() for data in dataset])
# boolean array that correspond to non null values
non_null = y_task != null_value
smiles_list = list(compress(enumerate(smiles_list), non_null))
else:
non_null = np.ones(len(dataset)) == 1
smiles_list = list(compress(enumerate(smiles_list), non_null))
rng = np.random.RandomState(seed)
scaffolds = defaultdict(list)
for ind, smiles in smiles_list:
scaffold = generate_scaffold(smiles, include_chirality=True)
scaffolds[scaffold].append(ind)
scaffold_sets = rng.permutation(list(scaffolds.values()))
n_total_valid = int(np.floor(frac_valid * len(dataset)))
n_total_test = int(np.floor(frac_test * len(dataset)))
train_idx = []
valid_idx = []
test_idx = []
for scaffold_set in scaffold_sets:
if len(valid_idx) + len(scaffold_set) <= n_total_valid:
valid_idx.extend(scaffold_set)
elif len(test_idx) + len(scaffold_set) <= n_total_test:
test_idx.extend(scaffold_set)
else:
train_idx.extend(scaffold_set)
return train_idx, valid_idx, test_idx
def load_smi_y(enzyme):
try:
path = 'data/' + enzyme + '_' + 'MACCS.csv'
data = pd.read_csv(path)
except:
path = enzyme + '_' + 'MACCS.csv'
data = pd.read_csv(path)
X = data['Smiles']
y = data['Activity']
return X, y
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNNforclassification(nn.Module):
def __init__(self, max_len, voc_len, load_path='model/CNN_encoder_pretrain2.pt',
last_layer_size=fps_len, output_size=2):
super(CNNforclassification, self).__init__()
self.last_layer_size = last_layer_size
self.output_size = output_size
self.pretrained = encoder(max_len, voc_len)
self.pretrained.load_state_dict(
torch.load(load_path, map_location=device))
self.w = nn.Linear(self.last_layer_size, self.output_size)
self.activation = nn.LeakyReLU()
def forward(self, x):
return self.w(self.activation(self.pretrained(x)))
def CNN_predict(enzyme, smi):
ml = 'CNN'
known_drugs = [smi]
file_path = 'model/' + ml + '_' + enzyme + '.pt'
print(file_path)
weight_dict = {1: torch.tensor([3.0, 1.0]), 2: torch.tensor([2.0, 1.0]), 3: torch.tensor([2.0, 1.0]),
4: torch.tensor([2.0, 1.0])}
model = CNNforclassification(max_len, len(vocabulary))
model.load_state_dict(torch.load(file_path, map_location=torch.device('cpu')))
model.eval()
params = {'batch_size':16, 'shuffle':False, 'drop_last':False, 'num_workers':0}
known_df = pd.DataFrame(known_drugs)
known_df.columns = ['Smiles']
known_df['Activity'] = 0
known_data = jak_dataset(known_df)
known_loader = DataLoader(known_data, **params)
for idx, (X, y_true) in tqdm(enumerate(known_loader), total=len(known_loader)):
# print(X)
model.eval()
# print(X)
output = model(X.clone().detach())
# print(output)
a, y_pred = torch.max(output, 1)
# print(a)
# print(output)
# print(torch.max(torch.softmax(output, 1), 1)[0].tolist())
# print(a.tolist())
# print(torch.max(torch.softmax(output, 1), 1)[1].tolist())
y_prob = torch.softmax(output,1)[:, 1].tolist()
# print(y_prob)
# print(y_pred.tolist())
return y_prob, y_pred
class RGCN_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(RGCN_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = RGCNConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = RGCNConv(layer_embd, out_embd*2, num_relations)
# self.GATConv1 = GCNConv(6*in_embd, layer_embd, num_relations)
# self.GATConv2 = GCNConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index, edge_type))
out = self.activation(self.GATConv2(out, edge_index, edge_type))
# out = self.activation(self.GATConv1(x_, edge_index))
# out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation(Z@Z.T)
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GCN_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(GCN_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = GCNConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = GCNConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index))
out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation(Z@Z.T)
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GAT_VAE(torch.nn.Module):
def __init__(self, in_embd, layer_embd, out_embd, num_relations, dropout):
super(GAT_VAE, self).__init__()
self.embedding = nn.ModuleList([nn.Embedding(35,in_embd), nn.Embedding(10,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(7,in_embd), \
nn.Embedding(5,in_embd), nn.Embedding(5,in_embd)])
self.GATConv1 = GATConv(6*in_embd, layer_embd, num_relations)
self.GATConv2 = GATConv(layer_embd, out_embd*2, num_relations)
self.GATConv1.reset_parameters()
self.GATConv2.reset_parameters()
self.activation = nn.Sigmoid()
self.d = out_embd
self.pool = GlobalAttention(gate_nn=nn.Sequential( \
nn.Linear(out_embd, out_embd), nn.BatchNorm1d(out_embd), nn.ReLU(), nn.Linear(out_embd, 1)))
self.graph_linear = nn.Linear(out_embd, 1)
def recognition_model(self, x, edge_index, edge_type, batch):
for i in range(6):
embds = self.embedding[i](x[:,i])
if i == 0:
x_ = embds
else:
x_ = torch.cat((x_, embds), 1)
out = self.activation(self.GATConv1(x_, edge_index))
out = self.activation(self.GATConv2(out, edge_index))
mu = out[:,0:self.d]
logvar = out[:,self.d:2*self.d]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std) + mu
def generation_model(self, Z):
out = self.activation(Z@Z.T)
return out
def forward(self, x, edge_index, edge_type, batch, type_):
if type_=='pretrain':
mu, logvar = self.recognition_model(x, edge_index, edge_type, batch)
Z = self.reparametrize(mu, logvar)
A_hat = self.generation_model(Z)
N = x.size(0)
A = torch.zeros((N,N), device=device)
with torch.no_grad():
for i in range(edge_index.size(1)):
A[edge_index[0,i], edge_index[1,i]] = 1
# print(A.size(),A_hat.size())
return A, A_hat, mu, logvar
else:
mu = self.cal_mu(x, edge_index, edge_type, batch)
out = self.pool(mu, batch)
out = self.graph_linear(out)
out = self.activation(out)
return out
def cal_mu(self, x, edge_index, edge_type, batch):
mu, _ = self.recognition_model(x, edge_index, edge_type, batch)
return mu
class GDataset(Dataset):
def __init__(self, nodes, edges, relations, y, idx):
super(GDataset, self).__init__()
self.nodes = nodes
self.edges = edges
self.y = y
self.relations = relations
self.idx = idx
def __getitem__(self, idx):
idx = self.idx[idx]
edge_index = torch.tensor(self.edges[idx].T, dtype=torch.long)
x = torch.tensor(self.nodes[idx], dtype=torch.long)
y = torch.tensor(self.y[idx], dtype=torch.float)
edge_type = torch.tensor(self.relations[idx], dtype=torch.float)
return Data(x=x,edge_index=edge_index,edge_type=edge_type,y=y)
def __len__(self):
return len(self.idx)
def collate_fn(self,batch):
pass
def preprocess_test(smiles):
nodes = []
edges = []
relations = []
lens = []
adjs = []
ords = []
for i in range(len(smiles)):
node, adj, order = gen_smiles2graph(smiles[i])
if node == 'error':
print(i, smiles, 'error')
continue
lens.append(adj.shape[0])
adjs.append(adj)
ords.append(order)
node[:,2] += 1
node[:,3] -= 1
nodes.append(node)
adjs = np.array(adjs)
lens = np.array(lens)
def file2array(path, delimiter=' '):
fp = open(path, 'r', encoding='utf-8')
string = fp.read()
fp.close()
row_list = string.splitlines()
data_list = [[float(i) for i in row.strip().split(',')] for row in row_list]
return np.array(data_list)
def adj2idx(adj):
idx = []
for i in range(adj.shape[0]):
for j in range(adj.shape[1]):
if adj[i,j] == 1:
idx.append([i,j])
return np.array(idx)
def order2relation(adj):
idx = []
for i in range(adj.shape[0]):
for j in range(adj.shape[1]):
if adj[i,j] != 0:
idx.extend([adj[i,j]])
return np.array(idx)
for i in range(lens.shape[0]):
adj = adjs[i]
order = ords[i]
idx = adj2idx(adj)
relation = order2relation(order)-1
edges.append(idx)
relations.append(relation)
return smiles, nodes, edges, relations
def gen_smiles2graph(sml):
"""Argument for the RD2NX function should be a valid SMILES sequence
returns: the graph
"""
ls = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 30, 33, 34, 35, 36, 37, 38, 47, 52, 53, 54, 55, 56, 83, 88]
dic = {}
for i in range(len(ls)):
dic[ls[i]] = i
m = rdkit.Chem.MolFromSmiles(sml)
# m = rdkit.Chem.AddHs(m)
order_string = {
rdkit.Chem.rdchem.BondType.SINGLE: 1,
rdkit.Chem.rdchem.BondType.DOUBLE: 2,
rdkit.Chem.rdchem.BondType.TRIPLE: 3,
rdkit.Chem.rdchem.BondType.AROMATIC: 4,
}
N = len(list(m.GetAtoms()))
nodes = np.zeros((N, 6))
try:
test = m.GetAtoms()
except:
return 'error', 'error', 'error'
for i in m.GetAtoms():
atom_types= dic[i.GetAtomicNum()]
atom_degree= i.GetDegree()
atom_form_charge= i.GetFormalCharge()
atom_hybridization= i.GetHybridization()
atom_aromatic= i.GetIsAromatic()
atom_chirality= i.GetChiralTag()
nodes[i.GetIdx()] = [atom_types, atom_degree, atom_form_charge, atom_hybridization, atom_aromatic, atom_chirality]
adj = np.zeros((N, N))
orders = np.zeros((N, N))
for j in m.GetBonds():
u = min(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
v = max(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
order = j.GetBondType()
if order in order_string:
order = order_string[order]
else:
raise Warning("Ignoring bond order" + order)
adj[u, v] = 1
adj[v, u] = 1
orders[u, v] = order
orders[v, u] = order
# adj += np.eye(N)
return nodes, adj, orders
def get_preds(probabilities, threshold=0.5):
return [1 if prob > threshold else 0 for prob in probabilities]
def GVAE_pred(smi, enzyme, model_path=model_path, device='cpu'):
smiles, nodes, edges, relations = preprocess_test([smi])
y = [0]*len(smiles)
test_set = GDataset(nodes, edges, relations,y, range(len(smiles)))
test_loader = DataLoader(test_set, batch_size=len(smiles), shuffle=False)
model = torch.load(model_path+'GVAE'+ '_' + enzyme + '.pt')
model.eval()
for data in test_loader:
data.to(device)
preds = model(data.x, data.edge_index, data.edge_type, data.batch, 'fintune')
# print(preds)
# print(get_preds(preds)[0])
return get_preds(preds)[0]
# if __name__ == '__main__':
# smiles = ['CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4']
# smiles, nodes, edges, relations = preprocess_test(smiles)
# y = [0]*len(smiles)
# test_set = GDataset(nodes, edges, relations, y, range(len(smiles)))
# test_loader = DataLoader(test_set, batch_size=len(smiles), shuffle=False)
# model = torch.load(model_path+'GVAE_JAK1.pt')
# for data in test_loader:
# data.to(device)
# preds = model(data.x, data.edge_index, data.edge_type, data.batch, 'fintune')
# print(preds)
def smile_list_to_MACCS(smi_list):
MACCS_list = []
for smi in smi_list:
mol = Chem.MolFromSmiles(smi)
maccs = list(MACCSkeys.GenMACCSKeys(mol).ToBitString())
MACCS_list.append(maccs)
return MACCS_list
model_path = 'model/'
st.write("""
# JAK prediction app
This app predicts the compound inhibition to certain JAK(s)
""")
st.sidebar.header('User Input Parameters')
def user_input_features():
name = st.text_input('compound name', 'Fedratinib')
# if name == None:
# name = 'test'
smi = st.text_input('compound SMILES', 'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4')
# if name == None and smi == None:
# name ='Fedratinib'
# smi = 'CC1=CN=C(N=C1NC2=CC(=CC=C2)S(=O)(=O)NC(C)(C)C)NC3=CC=C(C=C3)OCCN4CCCC4'
# enzyme = st.multiselect(
# 'Choose JAK kinase: ',
# ['JAK1', 'JAK2', 'JAK3', 'TYK2'])
# if enzyme == None:
# enzyme = 'JAK1'
st.write('Select JAK kinase: ')
JAK1 = st.checkbox('JAK1')
JAK2 = st.checkbox('JAK2')
JAK3 = st.checkbox('JAK3')
TYK2 = st.checkbox('TYK2')
all_enzyme = st.checkbox('Select all enzymes')
enzyme = []
if JAK1 == True:
enzyme.append('JAK1')
if JAK2 == True:
enzyme.append('JAK2')
if JAK3 == True:
enzyme.append('JAK3')
if TYK2 == True:
enzyme.append('TYK2')
if all_enzyme == True:
enzyme = ['JAK1', 'JAK2', 'JAK3', 'TYK2']
# model = st.multiselect(
# 'Choose model: ',
# ['knn','SVM_linear', 'SVM_poly', 'SVM_rbf', 'SVM_sigmoid', 'XGBoost'])
model = []
st.write('Select model: ')
knn = st.checkbox('KNN')
SVM_linear = st.checkbox('SVM_linear')
SVM_poly = st.checkbox('SVM_poly')
SVM_rbf = st.checkbox('SVM_rbf')
SVM_sigmoid = st.checkbox('SVM_sigmoid')
RF = st.checkbox('RF')
XGBoost = st.checkbox('XGBoost')
CNN = st.checkbox('CNN')
GVAE = st.checkbox('GraphVAE')
chembert = st.checkbox('chemBERTa')
all_model = st.checkbox('Select all models')
if knn == True:
model.append('knn')
if SVM_linear == True:
model.append('SVM_linear')
if SVM_poly == True:
model.append('SVM_poly')
if SVM_rbf == True:
model.append('SVM_rbf')
if SVM_sigmoid == True:
model.append('SVM_sigmoid')
if RF == True:
model.append('RF')
if XGBoost == True:
model.append('XGBoost')
if CNN == True:
model.append('CNN')
if GVAE == True:
model.append('GVAE')
if chembert == True:
model.append('chembert')
if all_model == True:
model = ['knn', 'SVM_linear', 'SVM_poly', 'SVM_rbf', 'SVM_sigmoid', 'RF', 'XGBoost', 'CNN', 'GVAE', 'chembert']
return name, smi, enzyme, model
with st.sidebar:
name, smi, enzyme, model_chosen = user_input_features()
st.subheader('User Input parameters:')
st.write('Current compound: ', name)
st.write('Current compound SMILE: ', smi)
st.write('Selected kinase:', enzyme)
st.write('Selected model: ', model_chosen)
if st.button('Start Prediction'):
if model_chosen==[]:
st.write('Did not choose model!')
if enzyme==[]:
st.write('Did not choose JAK kinase!')
if smi=='':
st.write('NO SMILES input!')
elif smi != '' and model_chosen !=[] and enzyme != []:
try: # TEST WHETHER SMILES STRING IS VALID
MACCS_list = smile_list_to_MACCS([smi])
header = ['bit' + str(i) for i in range(167)]
df = pd.DataFrame(MACCS_list,columns=header)
maccs = df.values
valid_smi = True
except:
st.write('Invalid compound SMILES! ')
valid_smi = False
try:
if valid_smi == True:
row_num = len(enzyme)
col_num = len(model_chosen)
prediction = []
df = pd.DataFrame()
for jak in enzyme:
for ml in model_chosen:
modelname = ml + '_' + jak + '.sav'
try:
if ml != 'GVAE' and ml != 'CNN':
model = pickle.load(open(model_path+modelname, 'rb'))
pred = model.predict(maccs)
elif ml == 'GVAE':
pred = GVAE_pred(smi, jak)
elif ml == 'CNN':
prob, pred = CNN_predict(jak, smi)
label =['noninhibitor', 'inhibitor']
# st.write(jak, ' ', ml, ' prediction is ', label[int(pred)])
prediction.append(label[int(pred)])
# st.write(jak, ' ', ml)
except:
if ml != 'GVAE' and ml != 'CNN':
st.write(modelname, ' cannot be loaded')
elif ml == 'GVAE' or ml == 'CNN':
st.write('CANNOT LOAD ', ml, ' for ', jak)
prediction.append('NA')
# try:
# pred_prob = model.predict_proba(maccs)
# # st.write(jak, ' ', ml, ' prediction is ', pred_prob)
# except:
# pass
# st.write('cannot predict_proba')
vec = np.array(prediction)
df = pd.DataFrame(vec.reshape(-1, col_num))
df.columns = model_chosen
df.index = enzyme
if name == '':
name = 'test compound'
title = 'Evaluation report for ' + name
st.subheader(title)
# st.write('Compound name: ', name)
# st.write('Compound SMILES: ', smi)
# df.loc[len(df)] = prediction
st.write(df)
except:
st.write('CANNOT FINISH PREDICTION')