|
|
|
import os |
|
import gradio as gr |
|
import pickle |
|
import torch |
|
import numpy as np |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForSequenceClassification, |
|
pipeline, |
|
AutoFeatureExtractor |
|
) |
|
from huggingface_hub import login, HfFolder |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
import torchvision.transforms as transforms |
|
import traceback |
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
|
|
logged_in = False |
|
if HF_TOKEN: |
|
try: |
|
login(token=HF_TOKEN) |
|
logged_in = True |
|
print("Successfully logged in to Hugging Face Hub using token from environment variable.") |
|
except Exception as e: |
|
print(f"Hugging Face Hub login using provided token failed: {e}") |
|
print("Proceeding without explicit login. Private models may fail.") |
|
else: |
|
|
|
if HfFolder.get_token(): |
|
print("Already logged in to Hugging Face Hub (found existing token).") |
|
logged_in = True |
|
HF_TOKEN = HfFolder.get_token() |
|
else: |
|
print("HF_TOKEN secret not set. Proceeding without login. Public models should still work.") |
|
print("If you need to use private models, add HF_TOKEN as a secret to this Space.") |
|
|
|
|
|
|
|
class CombinedAnalyzer: |
|
""" |
|
A class to encapsulate sentiment analysis and AI text detection pipelines for reviews. |
|
""" |
|
def __init__(self, |
|
sentiment_model_name="distilbert-base-uncased-finetuned-sst-2-english", |
|
detector_model_name="Hello-SimpleAI/chatgpt-detector-roberta", |
|
auth_token=None): |
|
print(f"Initializing CombinedAnalyzer with Sentiment: '{sentiment_model_name}' and Detector: '{detector_model_name}'...") |
|
self.device = 0 if torch.cuda.is_available() else -1 |
|
self.sentiment_model_name = sentiment_model_name |
|
self.detector_model_name = detector_model_name |
|
self.sentiment_pipeline = None |
|
self.detector_pipeline = None |
|
|
|
try: |
|
print(f" -> Loading sentiment pipeline: {self.sentiment_model_name}") |
|
self.sentiment_pipeline = pipeline("sentiment-analysis", model=self.sentiment_model_name, device=self.device, token=auth_token if auth_token else None) |
|
print(" -> Sentiment pipeline loaded.") |
|
except Exception as e: |
|
print(f"ERROR loading sentiment pipeline '{self.sentiment_model_name}': {e}") |
|
try: |
|
print(f" -> Loading AI text detector pipeline: {self.detector_model_name}") |
|
self.detector_pipeline = pipeline("text-classification", model=self.detector_model_name, device=self.device, token=auth_token if auth_token else None) |
|
print(" -> AI text detector pipeline loaded.") |
|
except Exception as e: |
|
print(f"ERROR loading AI text detector pipeline '{self.detector_model_name}': {e}") |
|
print("CombinedAnalyzer initialization complete.") |
|
|
|
def analyze(self, text): |
|
"""Analyzes text for sentiment and AI generation likelihood.""" |
|
if not isinstance(text, str) or not text.strip(): |
|
return { |
|
"sentiment_label": "N/A", "sentiment_score": 0, |
|
"authenticity_label": "N/A", "authenticity_score": 0, |
|
"error": "Input text cannot be empty." |
|
} |
|
results = {} |
|
|
|
if self.sentiment_pipeline and callable(self.sentiment_pipeline): |
|
try: |
|
sentiment_result = self.sentiment_pipeline(text)[0] |
|
results['sentiment_label'] = sentiment_result['label'] |
|
results['sentiment_score'] = round(sentiment_result['score'] * 100, 2) |
|
except Exception as e: |
|
print(f"Sentiment Analysis Error: {e}") |
|
results['sentiment_label'] = "Error" |
|
results['sentiment_score'] = 0 |
|
results['error'] = results.get('error', '') + f" Sentiment Error: {e};" |
|
else: |
|
results['sentiment_label'] = "Model N/A" |
|
results['sentiment_score'] = 0 |
|
|
|
if self.detector_pipeline and callable(self.detector_pipeline): |
|
try: |
|
detector_result = self.detector_pipeline(text)[0] |
|
auth_label_raw = detector_result['label'] |
|
auth_score = round(detector_result['score'] * 100, 2) |
|
if auth_label_raw.lower() in ['chatgpt', 'ai', 'generated', 'label_1', 'fake']: |
|
auth_label_display = "Likely AI-Generated" |
|
elif auth_label_raw.lower() in ['human', 'real', 'label_0']: |
|
auth_label_display = "Likely Human-Written" |
|
else: |
|
auth_label_display = f"Label: {auth_label_raw}" |
|
results['authenticity_label'] = auth_label_display |
|
results['authenticity_score'] = auth_score |
|
|
|
except Exception as e: |
|
print(f"AI Text Detection Error: {e}") |
|
results['authenticity_label'] = "Error" |
|
results['authenticity_score'] = 0 |
|
results['error'] = results.get('error', '') + f" Authenticity Error: {e};" |
|
else: |
|
results['authenticity_label'] = "Model N/A" |
|
results['authenticity_score'] = 0 |
|
return results |
|
|
|
|
|
|
|
class MultiDetectionSystem: |
|
""" |
|
Encapsulates models for fake news, AI image, and review analysis. |
|
Handles loading, preprocessing, and inference for HF Spaces. |
|
""" |
|
def __init__(self, auth_token=None): |
|
print("\nLoading MultiDetectionSystem models. This may take a few minutes...") |
|
self.auth_token = auth_token |
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
self.device_pipeline_arg = 0 if torch.cuda.is_available() else -1 |
|
print(f"Using device (torch models): {self.device}") |
|
print(f"Using device (pipelines): {self.device_pipeline_arg}") |
|
|
|
|
|
|
|
self.fake_news_model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli" |
|
self.fake_news_tokenizer = None |
|
self.fake_news_model = None |
|
try: |
|
print(f" -> Loading fake news tokenizer: {self.fake_news_model_name}") |
|
self.fake_news_tokenizer = AutoTokenizer.from_pretrained( |
|
self.fake_news_model_name, |
|
token=self.auth_token |
|
) |
|
print(f" -> Loading fake news model: {self.fake_news_model_name}") |
|
self.fake_news_model = AutoModelForSequenceClassification.from_pretrained( |
|
self.fake_news_model_name, |
|
token=self.auth_token |
|
).to(self.device) |
|
self.fake_news_model.eval() |
|
print(" -> Fake news model loaded.") |
|
except Exception as e: |
|
print(f"ERROR loading fake news model '{self.fake_news_model_name}': {e}") |
|
self.fake_news_tokenizer = None |
|
self.fake_news_model = None |
|
|
|
|
|
|
|
|
|
|
|
self.image_model_path = "finetune_vit_model.pkl" |
|
|
|
|
|
self.image_feature_extractor_name = "google/vit-base-patch16-224-in21k" |
|
|
|
self.image_classifier = None |
|
self.image_feature_extractor = None |
|
try: |
|
|
|
print(f" -> Loading image feature extractor: {self.image_feature_extractor_name}") |
|
self.image_feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
self.image_feature_extractor_name, |
|
token=self.auth_token |
|
) |
|
print(" -> Image feature extractor loaded.") |
|
|
|
|
|
print(f" -> Loading CUSTOM AI image model from PKL: {self.image_model_path}") |
|
if not os.path.exists(self.image_model_path): |
|
|
|
raise FileNotFoundError( |
|
f"PKL file not found at '{self.image_model_path}'. " |
|
f"Make sure '{os.path.basename(self.image_model_path)}' is uploaded to the root of this Space repository " |
|
f"and Git LFS is tracking it if it's large." |
|
) |
|
|
|
with open(self.image_model_path, 'rb') as f: |
|
|
|
self.image_classifier = pickle.load(f) |
|
print(" -> Custom AI image model loaded successfully from PKL.") |
|
|
|
if not isinstance(self.image_classifier, torch.nn.Module): |
|
print(f"Warning: Loaded object from PKL is type {type(self.image_classifier)}, not torch.nn.Module.") |
|
|
|
|
|
self.image_classifier = self.image_classifier.to(self.device) |
|
self.image_classifier.eval() |
|
print(f" -> Custom AI image model moved to {self.device} and set to eval mode.") |
|
|
|
except FileNotFoundError as e: |
|
print(f"FATAL ERROR: {e}. AI Image detection will not work.") |
|
self.image_classifier = None |
|
self.image_feature_extractor = None |
|
except (pickle.UnpicklingError, ImportError) as e: |
|
print(f"FATAL ERROR unpickling model from '{self.image_model_path}': {e}") |
|
print("Ensure the environment has all necessary libraries and class definitions required by the PKL file.") |
|
traceback.print_exc() |
|
self.image_classifier = None |
|
self.image_feature_extractor = None |
|
except Exception as e: |
|
print(f"ERROR loading image feature extractor or custom model: {e}") |
|
traceback.print_exc() |
|
self.image_classifier = None |
|
self.image_feature_extractor = None |
|
|
|
|
|
|
|
|
|
self.review_analyzer = CombinedAnalyzer(auth_token=self.auth_token) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print("\nMultiDetectionSystem initialization complete!") |
|
|
|
|
|
|
|
def detect_fake_news(self, text): |
|
"""Detects likelihood of text being fake news.""" |
|
if not self.fake_news_tokenizer or not self.fake_news_model: |
|
return {"real": 0, "fake": 0, "conclusion": "Fake News Model N/A"} |
|
if not text or not isinstance(text, str) or not text.strip(): |
|
return {"real": 0, "fake": 0, "conclusion": "Please provide text"} |
|
try: |
|
inputs = self.fake_news_tokenizer(text, truncation=True, return_tensors="pt", max_length=512).to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.fake_news_model(**inputs) |
|
scores = torch.softmax(outputs.logits.cpu(), dim=1)[0].tolist() |
|
|
|
|
|
fake_score = scores[0] |
|
real_score = scores[2] |
|
|
|
total_relevant_score = fake_score + real_score |
|
if total_relevant_score > 1e-6: |
|
display_real = (real_score / total_relevant_score) * 100 |
|
display_fake = (fake_score / total_relevant_score) * 100 |
|
else: |
|
display_real, display_fake = 0, 0 |
|
|
|
if display_fake > display_real: conclusion = "Likely FAKE news" |
|
elif display_real > display_fake: conclusion = "Likely REAL news" |
|
else: conclusion = "UNCERTAIN (Scores are equal or very low)" |
|
|
|
return {"real": round(display_real, 2), "fake": round(display_fake, 2), "conclusion": conclusion} |
|
except Exception as e: |
|
print(f"Error during fake news detection: {e}") |
|
traceback.print_exc() |
|
return {"real": 0, "fake": 0, "conclusion": "Detection Error"} |
|
|
|
|
|
|
|
def detect_ai_image(self, image): |
|
"""Detects likelihood of an image being AI-generated using the custom model.""" |
|
if not self.image_classifier or not self.image_feature_extractor: |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Image Model/Extractor N/A"} |
|
if image is None: |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Please provide an image"} |
|
|
|
try: |
|
if not isinstance(image, Image.Image): |
|
try: image = Image.fromarray(np.uint8(image)).convert('RGB') |
|
except Exception as e: |
|
print(f"Image conversion error: Input type was {type(image)}. Error: {e}") |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Invalid image format"} |
|
if image.mode != 'RGB': image = image.convert('RGB') |
|
|
|
inputs = self.image_feature_extractor(images=image, return_tensors="pt") |
|
pixel_values = inputs['pixel_values'].to(self.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.image_classifier(pixel_values=pixel_values) |
|
if not hasattr(outputs, 'logits'): |
|
|
|
if isinstance(outputs, torch.Tensor): |
|
logits = outputs |
|
else: |
|
print(f"Error: Model output (type: {type(outputs)}) has no 'logits' and isn't a tensor.") |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Model Output Error (Format)"} |
|
else: |
|
logits = outputs.logits |
|
|
|
|
|
probabilities = torch.softmax(logits, dim=-1)[0].cpu().tolist() |
|
|
|
|
|
|
|
|
|
human_prob_index = 0 |
|
ai_prob_index = 1 |
|
|
|
|
|
|
|
|
|
print(f"Using label indices -> Human: {human_prob_index}, AI: {ai_prob_index}") |
|
|
|
num_classes = len(probabilities) |
|
if not (0 <= human_prob_index < num_classes and 0 <= ai_prob_index < num_classes): |
|
print(f"ERROR: Invalid probability indices ({human_prob_index}, {ai_prob_index}) for {num_classes} output classes.") |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Model Output Error (Index)"} |
|
if human_prob_index == ai_prob_index: |
|
print(f"ERROR: Human and AI probability indices cannot be the same ({human_prob_index}).") |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Configuration Error (Index)"} |
|
|
|
human_score = probabilities[human_prob_index] |
|
ai_score = probabilities[ai_prob_index] |
|
print(f"Raw probabilities: {probabilities}") |
|
print(f" -> Human Score (idx {human_prob_index}): {human_score:.4f}, AI Score (idx {ai_prob_index}): {ai_score:.4f}") |
|
|
|
display_human = round(human_score * 100, 2) |
|
display_ai = round(ai_score * 100, 2) |
|
|
|
confidence_threshold = 50.0 |
|
if display_ai > display_human and display_ai >= confidence_threshold: conclusion = "Likely AI-GENERATED image" |
|
elif display_human > display_ai and display_human >= confidence_threshold: conclusion = "Likely HUMAN-CREATED image" |
|
else: conclusion = "UNCERTAIN origin" |
|
|
|
return {"human-generated": display_human, "ai-generated": display_ai, "conclusion": conclusion} |
|
|
|
except Exception as e: |
|
print(f"Error during AI image detection: {e}") |
|
traceback.print_exc() |
|
return {"human-generated": 0, "ai-generated": 0, "conclusion": "Detection Error"} |
|
|
|
|
|
|
|
def analyze_review(self, review_text): |
|
"""Analyzes a review text using the CombinedAnalyzer.""" |
|
if not self.review_analyzer: |
|
print("Error: Review Analyzer was not initialized.") |
|
return {"sentiment_label": "System Error", "sentiment_score": 0, "authenticity_label": "System Error", "authenticity_score": 0, "error": "Review Analyzer N/A"} |
|
if not review_text or not isinstance(review_text, str) or not review_text.strip(): |
|
return {"sentiment_label": "N/A", "sentiment_score": 0, "authenticity_label": "N/A", "authenticity_score": 0, "error": "Please provide review text"} |
|
try: |
|
analysis_result = self.review_analyzer.analyze(review_text) |
|
return analysis_result |
|
except Exception as e: |
|
print(f"Error during review analysis delegation: {e}") |
|
traceback.print_exc() |
|
return {"sentiment_label": "Error", "sentiment_score": 0, "authenticity_label": "Error", "authenticity_score": 0, "error": f"Analysis Error"} |
|
|
|
|
|
|
|
def analyze_all(self, news_text, image, review_text): |
|
"""Runs all relevant analyses based on the provided inputs.""" |
|
news_text_to_analyze = news_text if news_text and isinstance(news_text, str) and news_text.strip() else "" |
|
review_text_to_analyze = review_text if review_text and isinstance(review_text, str) and review_text.strip() else "" |
|
image_to_analyze = image |
|
|
|
fake_news_result = self.detect_fake_news(news_text_to_analyze) if news_text_to_analyze else {"real": 0, "fake": 0, "conclusion": "No text provided"} |
|
ai_image_result = self.detect_ai_image(image_to_analyze) if image_to_analyze is not None else {"human-generated": 0, "ai-generated": 0, "conclusion": "No image provided"} |
|
review_result = self.analyze_review(review_text_to_analyze) if review_text_to_analyze else {"sentiment_label": "N/A", "sentiment_score": 0, "authenticity_label": "N/A", "authenticity_score": 0, "error": "No text provided"} |
|
|
|
return { |
|
"fake_news_analysis": fake_news_result, |
|
"ai_image_analysis": ai_image_result, |
|
"review_analysis": review_result |
|
} |
|
|
|
|
|
|
|
|
|
def create_interface(system_instance): |
|
"""Creates the Gradio interface using the loaded MultiDetectionSystem.""" |
|
if system_instance is None: |
|
with gr.Blocks(theme=gr.themes.Soft()) as interface: |
|
gr.Markdown("# Error: Multi-Detection System Failed to Initialize") |
|
gr.Markdown(""" |
|
The application cannot start because the underlying AI models could not be loaded or initialized. Please check the Space logs for specific errors: |
|
* **PKL File:** Ensure `finetune_vit_model.pkl` is uploaded to the Space repository (root directory by default) and tracked with Git LFS if large. |
|
* **Feature Extractor:** Verify `image_feature_extractor_name` in the code matches the base model used for fine-tuning the PKL. |
|
* **Model Names:** Double-check all Hugging Face model names (`fake_news_model_name`, etc.). |
|
* **HF Token:** Ensure the `HF_TOKEN` secret is set correctly if using private models. |
|
* **Dependencies:** Check `requirements.txt` and potential conflicts. |
|
* **Pickle Compatibility:** The PKL file might require specific library versions or class definitions present in the environment. |
|
""") |
|
return interface |
|
|
|
|
|
def format_results_html(results_dict): |
|
|
|
if not results_dict: |
|
return '<p style="color: red;">An unexpected error occurred: No results dictionary received.</p>' |
|
|
|
html = "<h2>Analysis Results</h2>" |
|
|
|
|
|
news_result = results_dict.get("fake_news_analysis", {"real": 0, "fake": 0, "conclusion": "Analysis Error or N/A"}) |
|
news_real = news_result.get('real', 0) |
|
news_fake = news_result.get('fake', 0) |
|
news_conclusion = news_result.get('conclusion', 'N/A') |
|
if 'FAKE' in news_conclusion.upper(): conclusion_color_news = '#dc3545' |
|
elif 'REAL' in news_conclusion.upper(): conclusion_color_news = '#28a745' |
|
else: conclusion_color_news = '#ffc107' |
|
|
|
html += f""" |
|
<div style="margin-bottom: 20px; padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9;"> |
|
<h3>Fake News Detection</h3> |
|
<div style="display: flex; align-items: center; margin-bottom: 10px;"> |
|
<div style="flex-basis: 80px; font-weight: bold; margin-right: 10px;">Real:</div> |
|
<div style="flex-grow: 1; height: 20px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;"> |
|
<div style="width: {news_real}%; height: 100%; background-color: #28a745; transition: width 0.5s ease-in-out;" title="{news_real}%"></div> |
|
</div> |
|
<span style="margin-left: 10px; font-weight: bold; white-space: nowrap;">{news_real}%</span> |
|
</div> |
|
<div style="display: flex; align-items: center; margin-bottom: 10px;"> |
|
<div style="flex-basis: 80px; font-weight: bold; margin-right: 10px;">Fake:</div> |
|
<div style="flex-grow: 1; height: 20px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;"> |
|
<div style="width: {news_fake}%; height: 100%; background-color: #dc3545; transition: width 0.5s ease-in-out;" title="{news_fake}%"></div> |
|
</div> |
|
<span style="margin-left: 10px; font-weight: bold; white-space: nowrap;">{news_fake}%</span> |
|
</div> |
|
<p style="font-weight: bold; margin-top: 10px; color: {conclusion_color_news};">Conclusion: {news_conclusion}</p> |
|
</div>""" |
|
|
|
|
|
image_result = results_dict.get("ai_image_analysis", {"human-generated": 0, "ai-generated": 0, "conclusion": "Analysis Error or N/A"}) |
|
img_human = image_result.get('human-generated', 0) |
|
img_ai = image_result.get('ai-generated', 0) |
|
img_conclusion = image_result.get('conclusion', 'N/A') |
|
if 'AI-GENERATED' in img_conclusion.upper(): conclusion_color_img = '#dc3545' |
|
elif 'HUMAN-CREATED' in img_conclusion.upper(): conclusion_color_img = '#28a745' |
|
else: conclusion_color_img = '#ffc107' |
|
|
|
html += f""" |
|
<div style="margin-bottom: 20px; padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9;"> |
|
<h3>AI Image Detection</h3> |
|
<div style="display: flex; align-items: center; margin-bottom: 10px;"> |
|
<div style="flex-basis: 80px; font-weight: bold; margin-right: 10px;">Human:</div> |
|
<div style="flex-grow: 1; height: 20px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;"> |
|
<div style="width: {img_human}%; height: 100%; background-color: #28a745; transition: width 0.5s ease-in-out;" title="{img_human}%"></div> |
|
</div> |
|
<span style="margin-left: 10px; font-weight: bold; white-space: nowrap;">{img_human}%</span> |
|
</div> |
|
<div style="display: flex; align-items: center; margin-bottom: 10px;"> |
|
<div style="flex-basis: 80px; font-weight: bold; margin-right: 10px;">AI:</div> |
|
<div style="flex-grow: 1; height: 20px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;"> |
|
<div style="width: {img_ai}%; height: 100%; background-color: #dc3545; transition: width 0.5s ease-in-out;" title="{img_ai}%"></div> |
|
</div> |
|
<span style="margin-left: 10px; font-weight: bold; white-space: nowrap;">{img_ai}%</span> |
|
</div> |
|
<p style="font-weight: bold; margin-top: 10px; color: {conclusion_color_img};">Conclusion: {img_conclusion}</p> |
|
</div>""" |
|
|
|
|
|
review_result = results_dict.get("review_analysis", {"sentiment_label": "N/A", "sentiment_score": 0, "authenticity_label": "N/A", "authenticity_score": 0, "error": None}) |
|
sentiment_label = review_result.get('sentiment_label', 'N/A').upper() |
|
sentiment_score = review_result.get('sentiment_score', 0) |
|
authenticity_label = review_result.get('authenticity_label', 'N/A').upper() |
|
authenticity_score = review_result.get('authenticity_score', 0) |
|
review_error = review_result.get('error') |
|
|
|
sentiment_color = '#dc3545' if 'NEGATIVE' in sentiment_label else '#28a745' if 'POSITIVE' in sentiment_label else '#6c757d' |
|
authenticity_color = '#dc3545' if 'AI-GENERATED' in authenticity_label else '#28a745' if 'HUMAN-WRITTEN' in authenticity_label else '#6c757d' |
|
|
|
sentiment_text = f"{review_result.get('sentiment_label', 'N/A')} ({sentiment_score}%)" |
|
authenticity_text = f"{review_result.get('authenticity_label', 'N/A')} ({authenticity_score}%)" |
|
|
|
html += f""" |
|
<div style="padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9;"> |
|
<h3>Review Analysis</h3> |
|
<div style="margin-bottom: 15px;"> |
|
<h4>Sentiment</h4> |
|
<p style="font-weight: bold; color: {sentiment_color}; margin-bottom: 5px;">{sentiment_text}</p> |
|
<div style="height: 10px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;" title="Confidence: {sentiment_score}%"> |
|
<div style="width: {sentiment_score}%; height: 100%; background-color: {sentiment_color}; transition: width 0.5s ease-in-out;"></div> |
|
</div> |
|
</div> |
|
<div> |
|
<h4>Authenticity (AI Text Detection)</h4> |
|
<p style="font-weight: bold; color: {authenticity_color}; margin-bottom: 5px;">{authenticity_text}</p> |
|
<div style="height: 10px; background-color: #e9ecef; border-radius: 5px; overflow: hidden;" title="Confidence: {authenticity_score}%"> |
|
<div style="width: {authenticity_score}%; height: 100%; background-color: {authenticity_color}; transition: width 0.5s ease-in-out;"></div> |
|
</div> |
|
</div>""" |
|
if review_error and review_error not in ["Input text cannot be empty.", "Please provide review text", "No text provided"]: |
|
html += f'<p style="color: red; margin-top: 10px;">Analysis Note: {review_error}</p>' |
|
html += "</div>" |
|
|
|
return html |
|
|
|
|
|
|
|
with gr.Blocks(title="Multi-Detection System", theme=gr.themes.Soft()) as interface: |
|
gr.Markdown(f"""# Multi-Detection Analysis System |
|
Combines AI models to analyze text and images for authenticity and sentiment. |
|
* **Fake News Detection:** Analyzes text using `{system_instance.fake_news_model_name if system_instance else 'DeBERTa NLI'}`. |
|
* **AI Image Detection:** Checks if an image was likely AI-generated (using custom fine-tuned ViT model from `{system_instance.image_model_path if system_instance else 'PKL file'}`). Base Feature Extractor: `{system_instance.image_feature_extractor_name if system_instance else 'ViT Base'}`. |
|
* **Review Analysis:** Assesses sentiment (`{system_instance.review_analyzer.sentiment_model_name if system_instance else 'DistilBERT SST-2'}`) and authenticity (`{system_instance.review_analyzer.detector_model_name if system_instance else 'RoBERTa Detector'}`). |
|
""") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("All-in-One Analysis"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
news_input = gr.Textbox(label="News Text Input", lines=5, placeholder="Enter news article text here...") |
|
image_input = gr.Image(label="Image Input", type="pil", sources=["upload", "clipboard"]) |
|
review_input = gr.Textbox(label="Review Text Input", lines=5, placeholder="Enter product/service review here...") |
|
analyze_btn = gr.Button("Analyze All Inputs", variant="primary") |
|
with gr.Column(scale=2): |
|
results_html = gr.HTML(label="Analysis Results") |
|
|
|
|
|
with gr.TabItem("Fake News Detection Only"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
news_only_input = gr.Textbox(label="News Text", lines=10, placeholder="Enter news text...") |
|
news_only_btn = gr.Button("Detect Fake News", variant="primary") |
|
with gr.Column(scale=2): |
|
news_only_html = gr.HTML(label="Fake News Analysis Results") |
|
|
|
|
|
with gr.TabItem("AI Image Detection Only"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_only_input = gr.Image(label="Image", type="pil", sources=["upload", "clipboard"]) |
|
image_only_btn = gr.Button("Detect AI Image", variant="primary") |
|
with gr.Column(scale=2): |
|
image_only_html = gr.HTML(label="AI Image Analysis Results") |
|
|
|
|
|
with gr.TabItem("Review Analysis Only"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
review_only_input = gr.Textbox(label="Review Text", lines=10, placeholder="Enter review text...") |
|
review_only_btn = gr.Button("Analyze Review", variant="primary") |
|
with gr.Column(scale=2): |
|
review_only_html = gr.HTML(label="Review Analysis Results") |
|
|
|
|
|
|
|
analyze_btn.click( |
|
fn=lambda text, img, rev: format_results_html(system_instance.analyze_all(text, img, rev)), |
|
inputs=[news_input, image_input, review_input], |
|
outputs=results_html, |
|
api_name="analyze_all" |
|
) |
|
|
|
def create_dummy_results(key_to_keep, actual_result): |
|
base = { |
|
"fake_news_analysis": {"real": 0, "fake": 0, "conclusion": "Not Analyzed"}, |
|
"ai_image_analysis": {"human-generated": 0, "ai-generated": 0, "conclusion": "Not Analyzed"}, |
|
"review_analysis": {"sentiment_label": "N/A", "sentiment_score": 0, "authenticity_label": "N/A", "authenticity_score": 0, "error": "Not Analyzed"} |
|
} |
|
if key_to_keep in base: |
|
base[key_to_keep] = actual_result |
|
return base |
|
|
|
news_only_btn.click( |
|
fn=lambda text: format_results_html(create_dummy_results("fake_news_analysis", system_instance.detect_fake_news(text))), |
|
inputs=news_only_input, |
|
outputs=news_only_html, |
|
api_name="detect_fake_news" |
|
) |
|
image_only_btn.click( |
|
fn=lambda img: format_results_html(create_dummy_results("ai_image_analysis", system_instance.detect_ai_image(img))), |
|
inputs=image_only_input, |
|
outputs=image_only_html, |
|
api_name="detect_ai_image" |
|
) |
|
review_only_btn.click( |
|
fn=lambda rev: format_results_html(create_dummy_results("review_analysis", system_instance.analyze_review(rev))), |
|
inputs=review_only_input, |
|
outputs=review_only_html, |
|
api_name="analyze_review" |
|
) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["Scientists discover water plumes on Jupiter's moon Europa, suggesting potential for life.", None, "The hotel room was clean and the bed was comfortable, but the breakfast was overpriced and disappointing."], |
|
["BREAKING NEWS: Celebrity Couple Announces Shocking Split After 10 Years of Marriage!", None, None], |
|
[None, None, "This app constantly crashes and the customer support is useless. Worst purchase ever. Avoid at all costs!!"], |
|
["Local bakery wins national award for its innovative sourdough bread recipe. The owner credits her grandmother's secret technique.", None, "Amazing product! It does exactly what it promises and the quality is top-notch. Highly recommended for everyone!"], |
|
["Study shows chocolate consumption linked to higher intelligence. Researchers urge public to eat more dark chocolate daily.", None, "It was okay. Nothing special, but not terrible either. Just average."], |
|
["URGENT: Government confirms aliens landed in Nevada! Stock up on supplies NOW!", None, "Absolutely revolutionary! This product changed my life overnight. The sleek design and intuitive interface are unparalleled. Five stars!"], |
|
], |
|
inputs=[news_input, image_input, review_input], |
|
outputs=results_html, |
|
fn=lambda text, img, rev: format_results_html(system_instance.analyze_all(text, img, rev)), |
|
label="Example Scenarios (Click to Load into All-in-One Tab)" |
|
) |
|
|
|
return interface |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
print("-" * 30) |
|
print("Initializing MultiDetectionSystem for Hugging Face Spaces.") |
|
print("Loading models from Hugging Face Hub and local PKL file...") |
|
|
|
|
|
detection_system = None |
|
try: |
|
|
|
detection_system = MultiDetectionSystem(auth_token=HF_TOKEN) |
|
|
|
|
|
if not detection_system.fake_news_model: |
|
print("Warning: Fake news model failed to load.") |
|
if not detection_system.image_classifier or not detection_system.image_feature_extractor: |
|
print("Warning: Custom image model/extractor failed to load. Check PKL path and base model name.") |
|
if not detection_system.review_analyzer or not detection_system.review_analyzer.sentiment_pipeline or not detection_system.review_analyzer.detector_pipeline: |
|
print("Warning: One or more review analysis pipelines failed to load.") |
|
|
|
except Exception as e: |
|
print(f"\nCRITICAL ERROR during MultiDetectionSystem initialization: {e}") |
|
print("The application might not function correctly.") |
|
traceback.print_exc() |
|
|
|
|
|
|
|
print("\nCreating Gradio interface...") |
|
|
|
app_interface = create_interface(detection_system) |
|
|
|
print("Launching Gradio interface...") |
|
|
|
|
|
app_interface.launch(debug=True) |