engagement-analyzer-demo / pipeline /custom_functions.py
egumasa's picture
new UI
a937724
raw
history blame
7.42 kB
from functools import partial
from pathlib import Path
from typing import Iterable, Callable
import spacy
from spacy.training import Example
from spacy.tokens import DocBin, Doc
# make the factory work
# from scripts.rel_pipe import make_relation_extractor
# make the config work
# from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors
# from scripts.custom_comps.SpanCat_extention import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3, build_mean_max_reducer4
from typing import List, Tuple, cast
from thinc.api import Model, with_getitem, chain, list2ragged, Logistic
from thinc.api import Maxout, Linear, concatenate, glorot_uniform_init, PyTorchLSTM
from thinc.api import reduce_mean, reduce_max, reduce_first, reduce_last
from thinc.types import Ragged, Floats2d
from spacy.util import registry
from spacy.tokens import Doc
from spacy.ml.extract_spans import extract_spans
# @registry.layers("spacy.LinearLogistic.v1")
# def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
# """An output layer for multi-label classification. It uses a linear layer
# followed by a logistic activation.
# """
# return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
@registry.layers("mean_max_reducer.v1.5")
def build_mean_max_reducer1(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size, normalize=True, dropout=dropout),
)
@registry.layers("mean_max_reducer.v2")
def build_mean_max_reducer2(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, normalize=True, dropout=dropout),
Maxout(nO=hidden_size, normalize=True, dropout=dropout))
# @registry.layers("mean_max_reducer.v2")
# def build_mean_max_reducer2(hidden_size: int,
# depth: int) -> Model[Ragged, Floats2d]:
# """Reduce sequences by concatenating their mean and max pooled vectors,
# and then combine the concatenated vectors with a hidden layer.
# """
# return chain(
# concatenate(
# cast(Model[Ragged, Floats2d], reduce_last()),
# cast(Model[Ragged, Floats2d], reduce_first()),
# reduce_mean(),
# reduce_max(),
# ), Maxout(nO=hidden_size, normalize=True, dropout=0.0),
# PyTorchLSTM(nO=64, nI=hidden_size, bi=True, depth=depth, dropout=0.2))
@registry.layers("mean_max_reducer.v3")
def build_mean_max_reducer3(hidden_size: int,
maxout_pieces: int = 3,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size2,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size3,
nP=maxout_pieces,
normalize=True,
dropout=dropout))
@registry.layers("mean_max_reducer.v3.3")
def build_mean_max_reducer4(hidden_size: int,
depth: int) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size2, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size3, nP=3, normalize=True, dropout=0.0))
@registry.architectures("CustomSpanCategorizer.v2")
def build_spancat_model(
tok2vec: Model[List[Doc], List[Floats2d]],
reducer: Model[Ragged, Floats2d],
scorer: Model[Floats2d, Floats2d],
) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
"""Build a span categorizer model, given a token-to-vector model, a
reducer model to map the sequence of vectors for each span down to a single
vector, and a scorer model to map the vectors to probabilities.
tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
reducer (Model[Ragged, Floats2d]): The reducer model.
scorer (Model[Floats2d, Floats2d]): The scorer model.
"""
model = chain(
cast(
Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
with_getitem(
0,
chain(tok2vec,
cast(Model[List[Floats2d], Ragged], list2ragged()))),
),
extract_spans(),
reducer,
scorer,
)
model.set_ref("tok2vec", tok2vec)
model.set_ref("reducer", reducer)
model.set_ref("scorer", scorer)
return model
# @registry.architectures("spacy.SpanCategorizer.v1")
# def build_spancat_model(
# tok2vec: Model[List[Doc], List[Floats2d]],
# reducer: Model[Ragged, Floats2d],
# scorer: Model[Floats2d, Floats2d],
# ) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
# """Build a span categorizer model, given a token-to-vector model, a
# reducer model to map the sequence of vectors for each span down to a single
# vector, and a scorer model to map the vectors to probabilities.
# tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
# reducer (Model[Ragged, Floats2d]): The reducer model.
# scorer (Model[Floats2d, Floats2d]): The scorer model.
# """
# model = chain(
# cast(
# Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
# with_getitem(
# 0,
# chain(tok2vec,
# cast(Model[List[Floats2d], Ragged], list2ragged()))),
# ),
# extract_spans(),
# reducer,
# scorer,
# )
# model.set_ref("tok2vec", tok2vec)
# model.set_ref("reducer", reducer)
# model.set_ref("scorer", scorer)
# return model