|
import os |
|
import torch |
|
import yaml |
|
import numpy as np |
|
from PIL import Image |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
def pil_loader(path): |
|
|
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('RGB') |
|
|
|
|
|
def default_loader(path): |
|
return pil_loader(path) |
|
|
|
|
|
def tensor_img_to_npimg(tensor_img): |
|
""" |
|
Turn a tensor image with shape CxHxW to a numpy array image with shape HxWxC |
|
:param tensor_img: |
|
:return: a numpy array image with shape HxWxC |
|
""" |
|
if not (torch.is_tensor(tensor_img) and tensor_img.ndimension() == 3): |
|
raise NotImplementedError("Not supported tensor image. Only tensors with dimension CxHxW are supported.") |
|
npimg = np.transpose(tensor_img.numpy(), (1, 2, 0)) |
|
npimg = npimg.squeeze() |
|
assert isinstance(npimg, np.ndarray) and (npimg.ndim in {2, 3}) |
|
return npimg |
|
|
|
|
|
|
|
def normalize(x): |
|
return x.mul_(2).add_(-1) |
|
|
|
def same_padding(images, ksizes, strides, rates): |
|
assert len(images.size()) == 4 |
|
batch_size, channel, rows, cols = images.size() |
|
out_rows = (rows + strides[0] - 1) // strides[0] |
|
out_cols = (cols + strides[1] - 1) // strides[1] |
|
effective_k_row = (ksizes[0] - 1) * rates[0] + 1 |
|
effective_k_col = (ksizes[1] - 1) * rates[1] + 1 |
|
padding_rows = max(0, (out_rows-1)*strides[0]+effective_k_row-rows) |
|
padding_cols = max(0, (out_cols-1)*strides[1]+effective_k_col-cols) |
|
|
|
padding_top = int(padding_rows / 2.) |
|
padding_left = int(padding_cols / 2.) |
|
padding_bottom = padding_rows - padding_top |
|
padding_right = padding_cols - padding_left |
|
paddings = (padding_left, padding_right, padding_top, padding_bottom) |
|
images = torch.nn.ZeroPad2d(paddings)(images) |
|
return images |
|
|
|
|
|
def extract_image_patches(images, ksizes, strides, rates, padding='same'): |
|
""" |
|
Extract patches from images and put them in the C output dimension. |
|
:param padding: |
|
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape |
|
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for |
|
each dimension of images |
|
:param strides: [stride_rows, stride_cols] |
|
:param rates: [dilation_rows, dilation_cols] |
|
:return: A Tensor |
|
""" |
|
assert len(images.size()) == 4 |
|
assert padding in ['same', 'valid'] |
|
batch_size, channel, height, width = images.size() |
|
|
|
if padding == 'same': |
|
images = same_padding(images, ksizes, strides, rates) |
|
elif padding == 'valid': |
|
pass |
|
else: |
|
raise NotImplementedError('Unsupported padding type: {}.\ |
|
Only "same" or "valid" are supported.'.format(padding)) |
|
|
|
unfold = torch.nn.Unfold(kernel_size=ksizes, |
|
dilation=rates, |
|
padding=0, |
|
stride=strides) |
|
patches = unfold(images) |
|
return patches |
|
|
|
|
|
def random_bbox(config, batch_size): |
|
"""Generate a random tlhw with configuration. |
|
|
|
Args: |
|
config: Config should have configuration including img |
|
|
|
Returns: |
|
tuple: (top, left, height, width) |
|
|
|
""" |
|
img_height, img_width, _ = config['image_shape'] |
|
h, w = config['mask_shape'] |
|
margin_height, margin_width = config['margin'] |
|
maxt = img_height - margin_height - h |
|
maxl = img_width - margin_width - w |
|
bbox_list = [] |
|
if config['mask_batch_same']: |
|
t = np.random.randint(margin_height, maxt) |
|
l = np.random.randint(margin_width, maxl) |
|
bbox_list.append((t, l, h, w)) |
|
bbox_list = bbox_list * batch_size |
|
else: |
|
for i in range(batch_size): |
|
t = np.random.randint(margin_height, maxt) |
|
l = np.random.randint(margin_width, maxl) |
|
bbox_list.append((t, l, h, w)) |
|
|
|
return torch.tensor(bbox_list, dtype=torch.int64) |
|
|
|
|
|
def test_random_bbox(): |
|
image_shape = [256, 256, 3] |
|
mask_shape = [128, 128] |
|
margin = [0, 0] |
|
bbox = random_bbox(image_shape) |
|
return bbox |
|
|
|
|
|
def bbox2mask(bboxes, height, width, max_delta_h, max_delta_w): |
|
batch_size = bboxes.size(0) |
|
mask = torch.zeros((batch_size, 1, height, width), dtype=torch.float32) |
|
for i in range(batch_size): |
|
bbox = bboxes[i] |
|
delta_h = np.random.randint(max_delta_h // 2 + 1) |
|
delta_w = np.random.randint(max_delta_w // 2 + 1) |
|
mask[i, :, bbox[0] + delta_h:bbox[0] + bbox[2] - delta_h, bbox[1] + delta_w:bbox[1] + bbox[3] - delta_w] = 1. |
|
return mask |
|
|
|
|
|
def test_bbox2mask(): |
|
image_shape = [256, 256, 3] |
|
mask_shape = [128, 128] |
|
margin = [0, 0] |
|
max_delta_shape = [32, 32] |
|
bbox = random_bbox(image_shape) |
|
mask = bbox2mask(bbox, image_shape[0], image_shape[1], max_delta_shape[0], max_delta_shape[1]) |
|
return mask |
|
|
|
|
|
def local_patch(x, bbox_list): |
|
assert len(x.size()) == 4 |
|
patches = [] |
|
for i, bbox in enumerate(bbox_list): |
|
t, l, h, w = bbox |
|
patches.append(x[i, :, t:t + h, l:l + w]) |
|
return torch.stack(patches, dim=0) |
|
|
|
|
|
def mask_image(x, bboxes, config): |
|
height, width, _ = config['image_shape'] |
|
max_delta_h, max_delta_w = config['max_delta_shape'] |
|
mask = bbox2mask(bboxes, height, width, max_delta_h, max_delta_w) |
|
if x.is_cuda: |
|
mask = mask.cuda() |
|
|
|
if config['mask_type'] == 'hole': |
|
result = x * (1. - mask) |
|
elif config['mask_type'] == 'mosaic': |
|
|
|
mosaic_unit_size = config['mosaic_unit_size'] |
|
downsampled_image = F.interpolate(x, scale_factor=1. / mosaic_unit_size, mode='nearest') |
|
upsampled_image = F.interpolate(downsampled_image, size=(height, width), mode='nearest') |
|
result = upsampled_image * mask + x * (1. - mask) |
|
else: |
|
raise NotImplementedError('Not implemented mask type.') |
|
|
|
return result, mask |
|
|
|
|
|
def spatial_discounting_mask(config): |
|
"""Generate spatial discounting mask constant. |
|
|
|
Spatial discounting mask is first introduced in publication: |
|
Generative Image Inpainting with Contextual Attention, Yu et al. |
|
|
|
Args: |
|
config: Config should have configuration including HEIGHT, WIDTH, |
|
DISCOUNTED_MASK. |
|
|
|
Returns: |
|
tf.Tensor: spatial discounting mask |
|
|
|
""" |
|
gamma = config['spatial_discounting_gamma'] |
|
height, width = config['mask_shape'] |
|
shape = [1, 1, height, width] |
|
if config['discounted_mask']: |
|
mask_values = np.ones((height, width)) |
|
for i in range(height): |
|
for j in range(width): |
|
mask_values[i, j] = max( |
|
gamma ** min(i, height - i), |
|
gamma ** min(j, width - j)) |
|
mask_values = np.expand_dims(mask_values, 0) |
|
mask_values = np.expand_dims(mask_values, 0) |
|
else: |
|
mask_values = np.ones(shape) |
|
spatial_discounting_mask_tensor = torch.tensor(mask_values, dtype=torch.float32) |
|
if config['cuda']: |
|
spatial_discounting_mask_tensor = spatial_discounting_mask_tensor.cuda() |
|
return spatial_discounting_mask_tensor |
|
|
|
|
|
def reduce_mean(x, axis=None, keepdim=False): |
|
if not axis: |
|
axis = range(len(x.shape)) |
|
for i in sorted(axis, reverse=True): |
|
x = torch.mean(x, dim=i, keepdim=keepdim) |
|
return x |
|
|
|
|
|
def reduce_std(x, axis=None, keepdim=False): |
|
if not axis: |
|
axis = range(len(x.shape)) |
|
for i in sorted(axis, reverse=True): |
|
x = torch.std(x, dim=i, keepdim=keepdim) |
|
return x |
|
|
|
|
|
def reduce_sum(x, axis=None, keepdim=False): |
|
if not axis: |
|
axis = range(len(x.shape)) |
|
for i in sorted(axis, reverse=True): |
|
x = torch.sum(x, dim=i, keepdim=keepdim) |
|
return x |
|
|
|
|
|
def flow_to_image(flow): |
|
"""Transfer flow map to image. |
|
Part of code forked from flownet. |
|
""" |
|
out = [] |
|
maxu = -999. |
|
maxv = -999. |
|
minu = 999. |
|
minv = 999. |
|
maxrad = -1 |
|
for i in range(flow.shape[0]): |
|
u = flow[i, :, :, 0] |
|
v = flow[i, :, :, 1] |
|
idxunknow = (abs(u) > 1e7) | (abs(v) > 1e7) |
|
u[idxunknow] = 0 |
|
v[idxunknow] = 0 |
|
maxu = max(maxu, np.max(u)) |
|
minu = min(minu, np.min(u)) |
|
maxv = max(maxv, np.max(v)) |
|
minv = min(minv, np.min(v)) |
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
maxrad = max(maxrad, np.max(rad)) |
|
u = u / (maxrad + np.finfo(float).eps) |
|
v = v / (maxrad + np.finfo(float).eps) |
|
img = compute_color(u, v) |
|
out.append(img) |
|
return np.float32(np.uint8(out)) |
|
|
|
|
|
def pt_flow_to_image(flow): |
|
"""Transfer flow map to image. |
|
Part of code forked from flownet. |
|
""" |
|
out = [] |
|
maxu = torch.tensor(-999) |
|
maxv = torch.tensor(-999) |
|
minu = torch.tensor(999) |
|
minv = torch.tensor(999) |
|
maxrad = torch.tensor(-1) |
|
if torch.cuda.is_available(): |
|
maxu = maxu.cuda() |
|
maxv = maxv.cuda() |
|
minu = minu.cuda() |
|
minv = minv.cuda() |
|
maxrad = maxrad.cuda() |
|
for i in range(flow.shape[0]): |
|
u = flow[i, 0, :, :] |
|
v = flow[i, 1, :, :] |
|
idxunknow = (torch.abs(u) > 1e7) + (torch.abs(v) > 1e7) |
|
u[idxunknow] = 0 |
|
v[idxunknow] = 0 |
|
maxu = torch.max(maxu, torch.max(u)) |
|
minu = torch.min(minu, torch.min(u)) |
|
maxv = torch.max(maxv, torch.max(v)) |
|
minv = torch.min(minv, torch.min(v)) |
|
rad = torch.sqrt((u ** 2 + v ** 2).float()).to(torch.int64) |
|
maxrad = torch.max(maxrad, torch.max(rad)) |
|
u = u / (maxrad + torch.finfo(torch.float32).eps) |
|
v = v / (maxrad + torch.finfo(torch.float32).eps) |
|
|
|
img = pt_compute_color(u, v) |
|
out.append(img) |
|
|
|
return torch.stack(out, dim=0) |
|
|
|
|
|
def highlight_flow(flow): |
|
"""Convert flow into middlebury color code image. |
|
""" |
|
out = [] |
|
s = flow.shape |
|
for i in range(flow.shape[0]): |
|
img = np.ones((s[1], s[2], 3)) * 144. |
|
u = flow[i, :, :, 0] |
|
v = flow[i, :, :, 1] |
|
for h in range(s[1]): |
|
for w in range(s[1]): |
|
ui = u[h, w] |
|
vi = v[h, w] |
|
img[ui, vi, :] = 255. |
|
out.append(img) |
|
return np.float32(np.uint8(out)) |
|
|
|
|
|
def pt_highlight_flow(flow): |
|
"""Convert flow into middlebury color code image. |
|
""" |
|
out = [] |
|
s = flow.shape |
|
for i in range(flow.shape[0]): |
|
img = np.ones((s[1], s[2], 3)) * 144. |
|
u = flow[i, :, :, 0] |
|
v = flow[i, :, :, 1] |
|
for h in range(s[1]): |
|
for w in range(s[1]): |
|
ui = u[h, w] |
|
vi = v[h, w] |
|
img[ui, vi, :] = 255. |
|
out.append(img) |
|
return np.float32(np.uint8(out)) |
|
|
|
|
|
def compute_color(u, v): |
|
h, w = u.shape |
|
img = np.zeros([h, w, 3]) |
|
nanIdx = np.isnan(u) | np.isnan(v) |
|
u[nanIdx] = 0 |
|
v[nanIdx] = 0 |
|
|
|
colorwheel = make_color_wheel() |
|
ncols = np.size(colorwheel, 0) |
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
a = np.arctan2(-v, -u) / np.pi |
|
fk = (a + 1) / 2 * (ncols - 1) + 1 |
|
k0 = np.floor(fk).astype(int) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols + 1] = 1 |
|
f = fk - k0 |
|
for i in range(np.size(colorwheel, 1)): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0 - 1] / 255 |
|
col1 = tmp[k1 - 1] / 255 |
|
col = (1 - f) * col0 + f * col1 |
|
idx = rad <= 1 |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
notidx = np.logical_not(idx) |
|
col[notidx] *= 0.75 |
|
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) |
|
return img |
|
|
|
|
|
def pt_compute_color(u, v): |
|
h, w = u.shape |
|
img = torch.zeros([3, h, w]) |
|
if torch.cuda.is_available(): |
|
img = img.cuda() |
|
nanIdx = (torch.isnan(u) + torch.isnan(v)) != 0 |
|
u[nanIdx] = 0. |
|
v[nanIdx] = 0. |
|
|
|
colorwheel = pt_make_color_wheel() |
|
if torch.cuda.is_available(): |
|
colorwheel = colorwheel.cuda() |
|
ncols = colorwheel.size()[0] |
|
rad = torch.sqrt((u ** 2 + v ** 2).to(torch.float32)) |
|
a = torch.atan2(-v.to(torch.float32), -u.to(torch.float32)) / np.pi |
|
fk = (a + 1) / 2 * (ncols - 1) + 1 |
|
k0 = torch.floor(fk).to(torch.int64) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols + 1] = 1 |
|
f = fk - k0.to(torch.float32) |
|
for i in range(colorwheel.size()[1]): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0 - 1] |
|
col1 = tmp[k1 - 1] |
|
col = (1 - f) * col0 + f * col1 |
|
idx = rad <= 1. / 255. |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
notidx = (idx != 0) |
|
col[notidx] *= 0.75 |
|
img[i, :, :] = col * (1 - nanIdx).to(torch.float32) |
|
return img |
|
|
|
|
|
def make_color_wheel(): |
|
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6) |
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros([ncols, 3]) |
|
col = 0 |
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) |
|
col += RY |
|
|
|
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) |
|
colorwheel[col:col + YG, 1] = 255 |
|
col += YG |
|
|
|
colorwheel[col:col + GC, 1] = 255 |
|
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) |
|
col += GC |
|
|
|
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) |
|
colorwheel[col:col + CB, 2] = 255 |
|
col += CB |
|
|
|
colorwheel[col:col + BM, 2] = 255 |
|
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) |
|
col += + BM |
|
|
|
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) |
|
colorwheel[col:col + MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
def pt_make_color_wheel(): |
|
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6) |
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = torch.zeros([ncols, 3]) |
|
col = 0 |
|
|
|
colorwheel[0:RY, 0] = 1. |
|
colorwheel[0:RY, 1] = torch.arange(0, RY, dtype=torch.float32) / RY |
|
col += RY |
|
|
|
colorwheel[col:col + YG, 0] = 1. - (torch.arange(0, YG, dtype=torch.float32) / YG) |
|
colorwheel[col:col + YG, 1] = 1. |
|
col += YG |
|
|
|
colorwheel[col:col + GC, 1] = 1. |
|
colorwheel[col:col + GC, 2] = torch.arange(0, GC, dtype=torch.float32) / GC |
|
col += GC |
|
|
|
colorwheel[col:col + CB, 1] = 1. - (torch.arange(0, CB, dtype=torch.float32) / CB) |
|
colorwheel[col:col + CB, 2] = 1. |
|
col += CB |
|
|
|
colorwheel[col:col + BM, 2] = 1. |
|
colorwheel[col:col + BM, 0] = torch.arange(0, BM, dtype=torch.float32) / BM |
|
col += BM |
|
|
|
colorwheel[col:col + MR, 2] = 1. - (torch.arange(0, MR, dtype=torch.float32) / MR) |
|
colorwheel[col:col + MR, 0] = 1. |
|
return colorwheel |
|
|
|
|
|
def is_image_file(filename): |
|
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'] |
|
filename_lower = filename.lower() |
|
return any(filename_lower.endswith(extension) for extension in IMG_EXTENSIONS) |
|
|
|
|
|
def deprocess(img): |
|
img = img.add_(1).div_(2) |
|
return img |
|
|
|
|
|
|
|
def get_config(config): |
|
with open(config, 'r') as stream: |
|
return yaml.load(stream,Loader=yaml.Loader) |
|
|
|
|
|
|
|
def get_model_list(dirname, key, iteration=0): |
|
if os.path.exists(dirname) is False: |
|
return None |
|
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if |
|
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f] |
|
if gen_models is None: |
|
return None |
|
gen_models.sort() |
|
if iteration == 0: |
|
last_model_name = gen_models[-1] |
|
else: |
|
for model_name in gen_models: |
|
if '{:0>8d}'.format(iteration) in model_name: |
|
return model_name |
|
raise ValueError('Not found models with this iteration') |
|
return last_model_name |
|
|
|
|
|
if __name__ == '__main__': |
|
test_random_bbox() |
|
mask = test_bbox2mask() |
|
print(mask.shape) |
|
import matplotlib.pyplot as plt |
|
|
|
plt.imshow(mask, cmap='gray') |
|
plt.show() |
|
|