Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_manager.py
Browse files- api/ltx/ltx_aduc_manager.py +36 -22
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -9,10 +9,11 @@ from pathlib import Path
|
|
| 9 |
import threading
|
| 10 |
import queue
|
| 11 |
import time
|
|
|
|
| 12 |
from typing import List, Optional, Callable, Any, Tuple
|
| 13 |
|
| 14 |
# Imports dos builders e do gpu_manager
|
| 15 |
-
from api.ltx.
|
| 16 |
from managers.gpu_manager import gpu_manager
|
| 17 |
|
| 18 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
|
@@ -63,24 +64,42 @@ class LTXMainWorker(BaseWorker):
|
|
| 63 |
def __init__(self, worker_id: int, device: torch.device):
|
| 64 |
super().__init__(worker_id, device)
|
| 65 |
self.pipeline: Optional[LTXVideoPipeline] = None
|
|
|
|
| 66 |
|
| 67 |
def _load_models(self):
|
| 68 |
logging.info(f"[LTXWorker-{self.worker_id}] Loading models to CPU...")
|
| 69 |
self.pipeline = get_main_ltx_pipeline()
|
|
|
|
| 70 |
logging.info(f"[LTXWorker-{self.worker_id}] Moving pipeline to {self.device}...")
|
| 71 |
self.pipeline.to(self.device)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 74 |
-
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 75 |
self.is_busy = True
|
| 76 |
logging.info(f"Worker {self.worker_id} (LTX) starting job: {job_func.__name__}")
|
| 77 |
try:
|
| 78 |
-
|
|
|
|
| 79 |
logging.info(f"Worker {self.worker_id} (LTX) finished job successfully.")
|
| 80 |
return result
|
| 81 |
except Exception as e:
|
| 82 |
logging.error(f"Worker {self.worker_id} (LTX) job failed!", exc_info=True)
|
| 83 |
-
self.is_healthy = False
|
| 84 |
raise
|
| 85 |
finally:
|
| 86 |
self.is_busy = False
|
|
@@ -99,7 +118,6 @@ class VAEWorker(BaseWorker):
|
|
| 99 |
self.vae.eval()
|
| 100 |
|
| 101 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 102 |
-
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 103 |
self.is_busy = True
|
| 104 |
logging.info(f"Worker {self.worker_id} (VAE) starting job: {job_func.__name__}")
|
| 105 |
try:
|
|
@@ -138,7 +156,6 @@ class LTXAducManager:
|
|
| 138 |
|
| 139 |
self._initialize_workers()
|
| 140 |
|
| 141 |
-
# Inicia threads consumidores para processar as filas
|
| 142 |
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 143 |
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 144 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
|
@@ -152,17 +169,16 @@ class LTXAducManager:
|
|
| 152 |
|
| 153 |
def _initialize_workers(self):
|
| 154 |
"""Cria e inicia os workers com base nas GPUs alocadas."""
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
vae_gpus = gpu_manager.get_ltx_vae_device() # Ajuste se o nome for diferente
|
| 158 |
|
| 159 |
with self.pool_lock:
|
| 160 |
-
for i, device_id in enumerate(
|
| 161 |
worker = LTXMainWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 162 |
self.ltx_workers.append(worker)
|
| 163 |
worker.start()
|
| 164 |
|
| 165 |
-
for i, device_id in enumerate(
|
| 166 |
worker = VAEWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 167 |
self.vae_workers.append(worker)
|
| 168 |
worker.start()
|
|
@@ -170,6 +186,8 @@ class LTXAducManager:
|
|
| 170 |
def _get_available_worker(self, worker_pool: List[BaseWorker]) -> Optional[BaseWorker]:
|
| 171 |
"""Encontra um worker saudável e desocupado no pool."""
|
| 172 |
with self.pool_lock:
|
|
|
|
|
|
|
| 173 |
for worker in worker_pool:
|
| 174 |
healthy, busy = worker.get_status()
|
| 175 |
if healthy and not busy:
|
|
@@ -184,7 +202,7 @@ class LTXAducManager:
|
|
| 184 |
while worker is None:
|
| 185 |
worker = self._get_available_worker(worker_pool)
|
| 186 |
if worker is None:
|
| 187 |
-
time.sleep(0.1)
|
| 188 |
|
| 189 |
try:
|
| 190 |
result = worker.execute(job_func, args, kwargs)
|
|
@@ -200,36 +218,32 @@ class LTXAducManager:
|
|
| 200 |
with self.pool_lock:
|
| 201 |
for i, worker in enumerate(self.ltx_workers):
|
| 202 |
if not worker.is_alive() or not worker.is_healthy:
|
| 203 |
-
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 204 |
new_worker = LTXMainWorker(worker.worker_id, worker.device)
|
| 205 |
self.ltx_workers[i] = new_worker
|
| 206 |
new_worker.start()
|
| 207 |
-
|
| 208 |
for i, worker in enumerate(self.vae_workers):
|
| 209 |
if not worker.is_alive() or not worker.is_healthy:
|
| 210 |
-
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 211 |
new_worker = VAEWorker(worker.worker_id, worker.device)
|
| 212 |
self.vae_workers[i] = new_worker
|
| 213 |
new_worker.start()
|
| 214 |
|
| 215 |
def submit_job(self, job_type: str, job_func: Callable, *args, **kwargs) -> Any:
|
| 216 |
-
"""
|
| 217 |
-
Ponto de entrada público para submeter um trabalho ao pool.
|
| 218 |
-
Esta função é síncrona: ela espera pelo resultado.
|
| 219 |
-
"""
|
| 220 |
if job_type not in ['ltx', 'vae']:
|
| 221 |
raise ValueError("Invalid job_type. Must be 'ltx' or 'vae'.")
|
| 222 |
|
| 223 |
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 224 |
-
future = queue.Queue()
|
| 225 |
|
| 226 |
job_queue.put((job_func, args, kwargs, future))
|
| 227 |
|
| 228 |
-
# Bloqueia e espera pelo resultado ser colocado no 'future' pelo dispatcher
|
| 229 |
result = future.get()
|
| 230 |
|
| 231 |
if isinstance(result, Exception):
|
| 232 |
-
raise result
|
| 233 |
|
| 234 |
return result
|
| 235 |
|
|
|
|
| 9 |
import threading
|
| 10 |
import queue
|
| 11 |
import time
|
| 12 |
+
import yaml
|
| 13 |
from typing import List, Optional, Callable, Any, Tuple
|
| 14 |
|
| 15 |
# Imports dos builders e do gpu_manager
|
| 16 |
+
from api.ltx.ltx_utils import get_main_ltx_pipeline, get_main_vae
|
| 17 |
from managers.gpu_manager import gpu_manager
|
| 18 |
|
| 19 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
|
|
|
| 64 |
def __init__(self, worker_id: int, device: torch.device):
|
| 65 |
super().__init__(worker_id, device)
|
| 66 |
self.pipeline: Optional[LTXVideoPipeline] = None
|
| 67 |
+
self.autocast_dtype: torch.dtype = torch.float32
|
| 68 |
|
| 69 |
def _load_models(self):
|
| 70 |
logging.info(f"[LTXWorker-{self.worker_id}] Loading models to CPU...")
|
| 71 |
self.pipeline = get_main_ltx_pipeline()
|
| 72 |
+
self._set_precision_policy()
|
| 73 |
logging.info(f"[LTXWorker-{self.worker_id}] Moving pipeline to {self.device}...")
|
| 74 |
self.pipeline.to(self.device)
|
| 75 |
|
| 76 |
+
def _set_precision_policy(self):
|
| 77 |
+
"""Determina o dtype para o torch.autocast com base na config."""
|
| 78 |
+
try:
|
| 79 |
+
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 80 |
+
with open(config_path, "r") as file:
|
| 81 |
+
config = yaml.safe_load(file)
|
| 82 |
+
precision = str(config.get("precision", "bfloat16")).lower()
|
| 83 |
+
if precision in ["float8_e4m3fn", "bfloat16"]:
|
| 84 |
+
self.autocast_dtype = torch.bfloat16
|
| 85 |
+
elif precision == "mixed_precision":
|
| 86 |
+
self.autocast_dtype = torch.float16
|
| 87 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Autocast precision policy set to {self.autocast_dtype}")
|
| 88 |
+
except Exception as e:
|
| 89 |
+
logging.warning(f"[LTXWorker-{self.worker_id}] Could not set precision policy from config. Defaulting to float32. Error: {e}")
|
| 90 |
+
self.autocast_dtype = torch.float32
|
| 91 |
+
|
| 92 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
|
|
|
| 93 |
self.is_busy = True
|
| 94 |
logging.info(f"Worker {self.worker_id} (LTX) starting job: {job_func.__name__}")
|
| 95 |
try:
|
| 96 |
+
# Passa a sua própria instância do pipeline e o dtype para a função do job
|
| 97 |
+
result = job_func(self.pipeline, self.autocast_dtype, *args, **kwargs)
|
| 98 |
logging.info(f"Worker {self.worker_id} (LTX) finished job successfully.")
|
| 99 |
return result
|
| 100 |
except Exception as e:
|
| 101 |
logging.error(f"Worker {self.worker_id} (LTX) job failed!", exc_info=True)
|
| 102 |
+
self.is_healthy = False
|
| 103 |
raise
|
| 104 |
finally:
|
| 105 |
self.is_busy = False
|
|
|
|
| 118 |
self.vae.eval()
|
| 119 |
|
| 120 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
|
|
|
| 121 |
self.is_busy = True
|
| 122 |
logging.info(f"Worker {self.worker_id} (VAE) starting job: {job_func.__name__}")
|
| 123 |
try:
|
|
|
|
| 156 |
|
| 157 |
self._initialize_workers()
|
| 158 |
|
|
|
|
| 159 |
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 160 |
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 161 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
|
|
|
| 169 |
|
| 170 |
def _initialize_workers(self):
|
| 171 |
"""Cria e inicia os workers com base nas GPUs alocadas."""
|
| 172 |
+
ltx_gpus = [gpu_manager.get_ltx_device().index] # Assumindo que o getter retorna um device object
|
| 173 |
+
vae_gpus = [gpu_manager.get_ltx_vae_device().index]
|
|
|
|
| 174 |
|
| 175 |
with self.pool_lock:
|
| 176 |
+
for i, device_id in enumerate(ltx_gpus):
|
| 177 |
worker = LTXMainWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 178 |
self.ltx_workers.append(worker)
|
| 179 |
worker.start()
|
| 180 |
|
| 181 |
+
for i, device_id in enumerate(vae_gpus):
|
| 182 |
worker = VAEWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 183 |
self.vae_workers.append(worker)
|
| 184 |
worker.start()
|
|
|
|
| 186 |
def _get_available_worker(self, worker_pool: List[BaseWorker]) -> Optional[BaseWorker]:
|
| 187 |
"""Encontra um worker saudável e desocupado no pool."""
|
| 188 |
with self.pool_lock:
|
| 189 |
+
# Simples estratégia round-robin para distribuir a carga
|
| 190 |
+
# Uma estratégia mais complexa poderia verificar a carga da GPU
|
| 191 |
for worker in worker_pool:
|
| 192 |
healthy, busy = worker.get_status()
|
| 193 |
if healthy and not busy:
|
|
|
|
| 202 |
while worker is None:
|
| 203 |
worker = self._get_available_worker(worker_pool)
|
| 204 |
if worker is None:
|
| 205 |
+
time.sleep(0.1)
|
| 206 |
|
| 207 |
try:
|
| 208 |
result = worker.execute(job_func, args, kwargs)
|
|
|
|
| 218 |
with self.pool_lock:
|
| 219 |
for i, worker in enumerate(self.ltx_workers):
|
| 220 |
if not worker.is_alive() or not worker.is_healthy:
|
| 221 |
+
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY or dead. Restarting...")
|
| 222 |
new_worker = LTXMainWorker(worker.worker_id, worker.device)
|
| 223 |
self.ltx_workers[i] = new_worker
|
| 224 |
new_worker.start()
|
| 225 |
+
|
| 226 |
for i, worker in enumerate(self.vae_workers):
|
| 227 |
if not worker.is_alive() or not worker.is_healthy:
|
| 228 |
+
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY or dead. Restarting...")
|
| 229 |
new_worker = VAEWorker(worker.worker_id, worker.device)
|
| 230 |
self.vae_workers[i] = new_worker
|
| 231 |
new_worker.start()
|
| 232 |
|
| 233 |
def submit_job(self, job_type: str, job_func: Callable, *args, **kwargs) -> Any:
|
| 234 |
+
"""Ponto de entrada público para submeter um trabalho ao pool de forma síncrona."""
|
|
|
|
|
|
|
|
|
|
| 235 |
if job_type not in ['ltx', 'vae']:
|
| 236 |
raise ValueError("Invalid job_type. Must be 'ltx' or 'vae'.")
|
| 237 |
|
| 238 |
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 239 |
+
future = queue.Queue(1)
|
| 240 |
|
| 241 |
job_queue.put((job_func, args, kwargs, future))
|
| 242 |
|
|
|
|
| 243 |
result = future.get()
|
| 244 |
|
| 245 |
if isinstance(result, Exception):
|
| 246 |
+
raise result
|
| 247 |
|
| 248 |
return result
|
| 249 |
|