Spaces:
Paused
Paused
Update LTX-Video/ltx_video/pipelines/pipeline_ltx_video.py
Browse files
LTX-Video/ltx_video/pipelines/pipeline_ltx_video.py
CHANGED
|
@@ -107,11 +107,6 @@ class SpyLatent:
|
|
| 107 |
necessária se o tensor de entrada for 3D.
|
| 108 |
save_visual (bool): Se True, decodifica com o VAE e salva uma imagem.
|
| 109 |
"""
|
| 110 |
-
#print(f"\n--- [INSPEÇÃO DE LATENTE: {tag}] ---")
|
| 111 |
-
#if not isinstance(tensor, torch.Tensor):
|
| 112 |
-
# print(f" AVISO: O objeto fornecido para '{tag}' não é um tensor.")
|
| 113 |
-
# print("--- [FIM DA INSPEÇÃO] ---\n")
|
| 114 |
-
# return
|
| 115 |
|
| 116 |
try:
|
| 117 |
# --- Imprime Estatísticas do Tensor Original ---
|
|
@@ -120,7 +115,7 @@ class SpyLatent:
|
|
| 120 |
# --- Converte para 5D se necessário ---
|
| 121 |
tensor_5d = self._to_5d(tensor, reference_shape_5d)
|
| 122 |
if tensor_5d is not None and tensor.ndim == 3:
|
| 123 |
-
self._print_stats("Convertido para 5D", tensor_5d)
|
| 124 |
|
| 125 |
# --- Visualização com VAE ---
|
| 126 |
if save_visual and self.vae is not None and tensor_5d is not None:
|
|
@@ -129,7 +124,7 @@ class SpyLatent:
|
|
| 129 |
|
| 130 |
frame_idx_to_viz = min(1, tensor_5d.shape[2] - 1)
|
| 131 |
if frame_idx_to_viz < 0:
|
| 132 |
-
print(" VISUALIZAÇÃO (VAE): Tensor não tem frames para visualizar.")
|
| 133 |
else:
|
| 134 |
#print(f" VISUALIZAÇÃO (VAE): Usando frame de índice {frame_idx_to_viz}.")
|
| 135 |
latent_slice = tensor_5d[:, :, frame_idx_to_viz:frame_idx_to_viz+1, :, :]
|
|
@@ -138,7 +133,7 @@ class SpyLatent:
|
|
| 138 |
pixel_slice = self.vae.decode(latent_slice / self.vae.config.scaling_factor).sample
|
| 139 |
|
| 140 |
save_image((pixel_slice / 2 + 0.5).clamp(0, 1), os.path.join(self.output_dir, f"inspect_{tag.lower()}.png"))
|
| 141 |
-
print(" VISUALIZAÇÃO (VAE): Imagem salva.")
|
| 142 |
|
| 143 |
except Exception as e:
|
| 144 |
#print(f" ERRO na inspeção: {e}")
|
|
@@ -163,7 +158,7 @@ class SpyLatent:
|
|
| 163 |
std = tensor.std().item()
|
| 164 |
min_val = tensor.min().item()
|
| 165 |
max_val = tensor.max().item()
|
| 166 |
-
print(f"
|
| 167 |
|
| 168 |
|
| 169 |
|
|
@@ -1086,11 +1081,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1086 |
**retrieve_timesteps_kwargs,
|
| 1087 |
)
|
| 1088 |
|
| 1089 |
-
|
| 1090 |
-
print(f"[LTX2]LATENTS {latents.shape}")
|
| 1091 |
-
except Exception:
|
| 1092 |
-
pass
|
| 1093 |
-
|
| 1094 |
if self.allowed_inference_steps is not None:
|
| 1095 |
for timestep in [round(x, 4) for x in timesteps.tolist()]:
|
| 1096 |
assert (
|
|
@@ -1159,11 +1150,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1159 |
max_new_tokens=text_encoder_max_tokens,
|
| 1160 |
)
|
| 1161 |
|
| 1162 |
-
|
| 1163 |
-
print(f"[LTX3]LATENTS {latents.shape}")
|
| 1164 |
-
except Exception:
|
| 1165 |
-
pass
|
| 1166 |
-
|
| 1167 |
# 3. Encode input prompt
|
| 1168 |
if self.text_encoder is not None:
|
| 1169 |
self.text_encoder = self.text_encoder.to(self._execution_device)
|
|
@@ -1230,7 +1217,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1230 |
)
|
| 1231 |
|
| 1232 |
try:
|
| 1233 |
-
print(f"[
|
| 1234 |
original_shape = latents
|
| 1235 |
except Exception:
|
| 1236 |
pass
|
|
@@ -1252,20 +1239,11 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1252 |
init_latents = latents.clone() # Used for image_cond_noise_update
|
| 1253 |
|
| 1254 |
try:
|
| 1255 |
-
print(f"[LTXCond]
|
| 1256 |
-
except Exception:
|
| 1257 |
-
pass
|
| 1258 |
-
|
| 1259 |
-
try:
|
| 1260 |
-
print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
|
| 1261 |
-
except Exception:
|
| 1262 |
-
pass
|
| 1263 |
-
|
| 1264 |
-
try:
|
| 1265 |
-
print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
|
| 1266 |
except Exception:
|
| 1267 |
pass
|
| 1268 |
|
|
|
|
| 1269 |
|
| 1270 |
|
| 1271 |
|
|
@@ -1273,10 +1251,6 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1273 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1274 |
|
| 1275 |
|
| 1276 |
-
try:
|
| 1277 |
-
print(f"[LTX5]LATENTS {latents.shape}")
|
| 1278 |
-
except Exception:
|
| 1279 |
-
pass
|
| 1280 |
|
| 1281 |
# 7. Denoising loop
|
| 1282 |
num_warmup_steps = max(
|
|
@@ -1337,11 +1311,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1337 |
generator,
|
| 1338 |
)
|
| 1339 |
|
| 1340 |
-
|
| 1341 |
-
print(f"[LTX6]LATENTS {latents.shape}")
|
| 1342 |
-
self.spy.inspect(latents, "LTX6_After_Patchify", reference_shape_5d=original_shape)
|
| 1343 |
-
except Exception:
|
| 1344 |
-
pass
|
| 1345 |
|
| 1346 |
|
| 1347 |
|
|
@@ -1352,11 +1322,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1352 |
latent_model_input, t
|
| 1353 |
)
|
| 1354 |
|
| 1355 |
-
|
| 1356 |
-
print(f"[LTX7]LATENTS {latent_model_input.shape}")
|
| 1357 |
-
self.spy.inspect(latents, "LTX7_After_Patchify", reference_shape_5d=original_shape)
|
| 1358 |
-
except Exception:
|
| 1359 |
-
pass
|
| 1360 |
|
| 1361 |
current_timestep = t
|
| 1362 |
if not torch.is_tensor(current_timestep):
|
|
@@ -1473,12 +1439,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1473 |
stochastic_sampling=stochastic_sampling,
|
| 1474 |
)
|
| 1475 |
|
| 1476 |
-
|
| 1477 |
-
print(f"[LTX8]LATENTS {latents.shape}")
|
| 1478 |
-
self.spy.inspect(latents, "LTX8_After_Patchify", reference_shape_5d=original_shape)
|
| 1479 |
-
except Exception:
|
| 1480 |
-
pass
|
| 1481 |
-
|
| 1482 |
# call the callback, if provided
|
| 1483 |
if i == len(timesteps) - 1 or (
|
| 1484 |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
@@ -1490,12 +1451,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1490 |
|
| 1491 |
|
| 1492 |
|
| 1493 |
-
|
| 1494 |
-
print(f"[LTX9]LATENTS {latents.shape}")
|
| 1495 |
-
self.spy.inspect(latents, "LTX9_After_Patchify", reference_shape_5d=original_shape)
|
| 1496 |
-
|
| 1497 |
-
except Exception:
|
| 1498 |
-
pass
|
| 1499 |
|
| 1500 |
|
| 1501 |
if offload_to_cpu:
|
|
@@ -1507,11 +1463,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1507 |
latents = latents[:, num_cond_latents:]
|
| 1508 |
|
| 1509 |
|
| 1510 |
-
|
| 1511 |
-
print(f"[LTX10]LATENTS {latents.shape}")
|
| 1512 |
-
self.spy.inspect(latents, "LTX10_After_Patchify", reference_shape_5d=original_shape)
|
| 1513 |
-
except Exception:
|
| 1514 |
-
pass
|
| 1515 |
|
| 1516 |
latents = self.patchifier.unpatchify(
|
| 1517 |
latents=latents,
|
|
@@ -1520,6 +1472,14 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1520 |
out_channels=self.transformer.in_channels
|
| 1521 |
// math.prod(self.patchifier.patch_size),
|
| 1522 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1523 |
if output_type != "latent":
|
| 1524 |
if self.vae.decoder.timestep_conditioning:
|
| 1525 |
noise = torch.randn_like(latents)
|
|
@@ -1549,7 +1509,7 @@ class LTXVideoPipeline(DiffusionPipeline):
|
|
| 1549 |
)
|
| 1550 |
|
| 1551 |
try:
|
| 1552 |
-
print(f"[LTX11]
|
| 1553 |
except Exception:
|
| 1554 |
pass
|
| 1555 |
|
|
|
|
| 107 |
necessária se o tensor de entrada for 3D.
|
| 108 |
save_visual (bool): Se True, decodifica com o VAE e salva uma imagem.
|
| 109 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
try:
|
| 112 |
# --- Imprime Estatísticas do Tensor Original ---
|
|
|
|
| 115 |
# --- Converte para 5D se necessário ---
|
| 116 |
tensor_5d = self._to_5d(tensor, reference_shape_5d)
|
| 117 |
if tensor_5d is not None and tensor.ndim == 3:
|
| 118 |
+
#self._print_stats("Convertido para 5D", tensor_5d)
|
| 119 |
|
| 120 |
# --- Visualização com VAE ---
|
| 121 |
if save_visual and self.vae is not None and tensor_5d is not None:
|
|
|
|
| 124 |
|
| 125 |
frame_idx_to_viz = min(1, tensor_5d.shape[2] - 1)
|
| 126 |
if frame_idx_to_viz < 0:
|
| 127 |
+
#print(" VISUALIZAÇÃO (VAE): Tensor não tem frames para visualizar.")
|
| 128 |
else:
|
| 129 |
#print(f" VISUALIZAÇÃO (VAE): Usando frame de índice {frame_idx_to_viz}.")
|
| 130 |
latent_slice = tensor_5d[:, :, frame_idx_to_viz:frame_idx_to_viz+1, :, :]
|
|
|
|
| 133 |
pixel_slice = self.vae.decode(latent_slice / self.vae.config.scaling_factor).sample
|
| 134 |
|
| 135 |
save_image((pixel_slice / 2 + 0.5).clamp(0, 1), os.path.join(self.output_dir, f"inspect_{tag.lower()}.png"))
|
| 136 |
+
#print(" VISUALIZAÇÃO (VAE): Imagem salva.")
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
#print(f" ERRO na inspeção: {e}")
|
|
|
|
| 158 |
std = tensor.std().item()
|
| 159 |
min_val = tensor.min().item()
|
| 160 |
max_val = tensor.max().item()
|
| 161 |
+
print(f"{tensor.shape}")
|
| 162 |
|
| 163 |
|
| 164 |
|
|
|
|
| 1081 |
**retrieve_timesteps_kwargs,
|
| 1082 |
)
|
| 1083 |
|
| 1084 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1085 |
if self.allowed_inference_steps is not None:
|
| 1086 |
for timestep in [round(x, 4) for x in timesteps.tolist()]:
|
| 1087 |
assert (
|
|
|
|
| 1150 |
max_new_tokens=text_encoder_max_tokens,
|
| 1151 |
)
|
| 1152 |
|
| 1153 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1154 |
# 3. Encode input prompt
|
| 1155 |
if self.text_encoder is not None:
|
| 1156 |
self.text_encoder = self.text_encoder.to(self._execution_device)
|
|
|
|
| 1217 |
)
|
| 1218 |
|
| 1219 |
try:
|
| 1220 |
+
print(f"[LTX]RUIDO-LATENTS-INICIAL {latents.shape}")
|
| 1221 |
original_shape = latents
|
| 1222 |
except Exception:
|
| 1223 |
pass
|
|
|
|
| 1239 |
init_latents = latents.clone() # Used for image_cond_noise_update
|
| 1240 |
|
| 1241 |
try:
|
| 1242 |
+
print(f"[LTXCond]conditioning_items {conditioning_items.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1243 |
except Exception:
|
| 1244 |
pass
|
| 1245 |
|
| 1246 |
+
|
| 1247 |
|
| 1248 |
|
| 1249 |
|
|
|
|
| 1251 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1252 |
|
| 1253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1254 |
|
| 1255 |
# 7. Denoising loop
|
| 1256 |
num_warmup_steps = max(
|
|
|
|
| 1311 |
generator,
|
| 1312 |
)
|
| 1313 |
|
| 1314 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1315 |
|
| 1316 |
|
| 1317 |
|
|
|
|
| 1322 |
latent_model_input, t
|
| 1323 |
)
|
| 1324 |
|
| 1325 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1326 |
|
| 1327 |
current_timestep = t
|
| 1328 |
if not torch.is_tensor(current_timestep):
|
|
|
|
| 1439 |
stochastic_sampling=stochastic_sampling,
|
| 1440 |
)
|
| 1441 |
|
| 1442 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1443 |
# call the callback, if provided
|
| 1444 |
if i == len(timesteps) - 1 or (
|
| 1445 |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
|
|
| 1451 |
|
| 1452 |
|
| 1453 |
|
| 1454 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1455 |
|
| 1456 |
|
| 1457 |
if offload_to_cpu:
|
|
|
|
| 1463 |
latents = latents[:, num_cond_latents:]
|
| 1464 |
|
| 1465 |
|
| 1466 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1467 |
|
| 1468 |
latents = self.patchifier.unpatchify(
|
| 1469 |
latents=latents,
|
|
|
|
| 1472 |
out_channels=self.transformer.in_channels
|
| 1473 |
// math.prod(self.patchifier.patch_size),
|
| 1474 |
)
|
| 1475 |
+
|
| 1476 |
+
|
| 1477 |
+
try:
|
| 1478 |
+
print(f"[LTX10]LATENTS Fim{latents.shape}")
|
| 1479 |
+
#self.spy.inspect(latents, "LTX_After_Patchify", reference_shape_5d=original_shape)
|
| 1480 |
+
except Exception:
|
| 1481 |
+
pass
|
| 1482 |
+
|
| 1483 |
if output_type != "latent":
|
| 1484 |
if self.vae.decoder.timestep_conditioning:
|
| 1485 |
noise = torch.randn_like(latents)
|
|
|
|
| 1509 |
)
|
| 1510 |
|
| 1511 |
try:
|
| 1512 |
+
print(f"[LTX11]LATENTS_pix_fim{latents.shape}")
|
| 1513 |
except Exception:
|
| 1514 |
pass
|
| 1515 |
|