Spaces:
Paused
Paused
Create managers/vae_manager.py
Browse files- managers/vae_manager.py +55 -0
managers/vae_manager.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# vae_manager.py — versão simples (beta 1.0)
|
| 2 |
+
# Responsável por decodificar latentes (B,C,T,H,W) → pixels (B,C,T,H',W') em [0,1].
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import contextlib
|
| 6 |
+
|
| 7 |
+
class _SimpleVAEManager:
|
| 8 |
+
def __init__(self, pipeline=None, device=None, autocast_dtype=torch.float32):
|
| 9 |
+
"""
|
| 10 |
+
pipeline: objeto do LTX que expõe decode_latents(...) ou .vae.decode(...)
|
| 11 |
+
device: "cuda" ou "cpu" onde a decodificação deve ocorrer
|
| 12 |
+
autocast_dtype: dtype de autocast quando em CUDA (bf16/fp16/fp32)
|
| 13 |
+
"""
|
| 14 |
+
self.pipeline = pipeline
|
| 15 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
self.autocast_dtype = autocast_dtype
|
| 17 |
+
|
| 18 |
+
def attach_pipeline(self, pipeline, device=None, autocast_dtype=None):
|
| 19 |
+
self.pipeline = pipeline
|
| 20 |
+
if device is not None:
|
| 21 |
+
self.device = device
|
| 22 |
+
if autocast_dtype is not None:
|
| 23 |
+
self.autocast_dtype = autocast_dtype
|
| 24 |
+
|
| 25 |
+
@torch.no_grad()
|
| 26 |
+
def decode(self, latents_5d: torch.Tensor) -> torch.Tensor:
|
| 27 |
+
"""
|
| 28 |
+
Decodifica todo o bloco 5D de uma vez, replicando o fluxo simples do deformes4D.
|
| 29 |
+
Retorna tensor de pixels 5D em [0,1] com shape (B,C,T,H',W').
|
| 30 |
+
"""
|
| 31 |
+
if self.pipeline is None:
|
| 32 |
+
raise RuntimeError("VAE Manager sem pipeline. Chame attach_pipeline primeiro.")
|
| 33 |
+
|
| 34 |
+
# Garante device correto
|
| 35 |
+
latents_5d = latents_5d.to(self.device, non_blocking=True)
|
| 36 |
+
|
| 37 |
+
ctx = torch.autocast(device_type="cuda", dtype=self.autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 38 |
+
with ctx:
|
| 39 |
+
if hasattr(self.pipeline, "decode_latents"):
|
| 40 |
+
pixels_5d = self.pipeline.decode_latents(latents_5d)
|
| 41 |
+
elif hasattr(self.pipeline, "vae") and hasattr(self.pipeline.vae, "decode"):
|
| 42 |
+
pixels_5d = self.pipeline.vae.decode(latents_5d)
|
| 43 |
+
else:
|
| 44 |
+
raise RuntimeError("Pipeline não expõe decode_latents nem vae.decode.")
|
| 45 |
+
|
| 46 |
+
# Normaliza para [0,1] se vier em [-1,1]
|
| 47 |
+
if pixels_5d.min() < 0:
|
| 48 |
+
pixels_5d = (pixels_5d.clamp(-1, 1) + 1.0) / 2.0
|
| 49 |
+
else:
|
| 50 |
+
pixels_5d = pixels_5d.clamp(0, 1)
|
| 51 |
+
|
| 52 |
+
return pixels_5d
|
| 53 |
+
|
| 54 |
+
# Singleton global de uso simples
|
| 55 |
+
vae_manager_singleton = _SimpleVAEManager()
|