Spaces:
Paused
Paused
Upload pipeline_ltx_video (3).py
Browse files
LTX-Video/ltx_video/pipelines/pipeline_ltx_video (3).py
ADDED
|
@@ -0,0 +1,2116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
|
| 2 |
+
import copy
|
| 3 |
+
import inspect
|
| 4 |
+
import math
|
| 5 |
+
import re
|
| 6 |
+
from contextlib import nullcontext
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 13 |
+
from diffusers.models import AutoencoderKL
|
| 14 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 15 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
| 16 |
+
#from diffusers.utils import deprecate, logging
|
| 17 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 18 |
+
from einops import rearrange
|
| 19 |
+
from transformers import (
|
| 20 |
+
T5EncoderModel,
|
| 21 |
+
T5Tokenizer,
|
| 22 |
+
AutoModelForCausalLM,
|
| 23 |
+
AutoProcessor,
|
| 24 |
+
AutoTokenizer,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import (
|
| 29 |
+
CausalVideoAutoencoder,
|
| 30 |
+
)
|
| 31 |
+
from ltx_video.models.autoencoders.vae_encode import (
|
| 32 |
+
get_vae_size_scale_factor,
|
| 33 |
+
latent_to_pixel_coords,
|
| 34 |
+
vae_decode,
|
| 35 |
+
vae_encode,
|
| 36 |
+
)
|
| 37 |
+
from ltx_video.models.transformers.symmetric_patchifier import Patchifier
|
| 38 |
+
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 39 |
+
from ltx_video.schedulers.rf import TimestepShifter
|
| 40 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 41 |
+
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
|
| 42 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 43 |
+
from ltx_video.models.autoencoders.vae_encode import (
|
| 44 |
+
un_normalize_latents,
|
| 45 |
+
normalize_latents,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
import warnings
|
| 49 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 50 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 51 |
+
warnings.filterwarnings("ignore", message=".*")
|
| 52 |
+
|
| 53 |
+
from huggingface_hub import logging
|
| 54 |
+
|
| 55 |
+
logging.set_verbosity_error()
|
| 56 |
+
logging.set_verbosity_warning()
|
| 57 |
+
logging.set_verbosity_info()
|
| 58 |
+
logging.set_verbosity_debug()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
#logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class SpyLatent:
|
| 65 |
+
|
| 66 |
+
"""
|
| 67 |
+
Uma classe para inspecionar tensores latentes em vários estágios de um pipeline.
|
| 68 |
+
Imprime estatísticas e pode salvar visualizações decodificadas por um VAE.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
import torch
|
| 72 |
+
import os
|
| 73 |
+
import traceback
|
| 74 |
+
from einops import rearrange
|
| 75 |
+
from torchvision.utils import save_image
|
| 76 |
+
|
| 77 |
+
def __init__(self, vae=None, output_dir: str = "/app/output"):
|
| 78 |
+
"""
|
| 79 |
+
Inicializa o espião.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
vae: A instância do modelo VAE para decodificar os latentes. Se for None,
|
| 83 |
+
a visualização será desativada.
|
| 84 |
+
output_dir (str): O diretório padrão para salvar as imagens de visualização.
|
| 85 |
+
"""
|
| 86 |
+
self.vae = vae
|
| 87 |
+
self.output_dir = output_dir
|
| 88 |
+
self.device = vae.device if hasattr(vae, 'device') else torch.device("cpu")
|
| 89 |
+
|
| 90 |
+
if self.vae is None:
|
| 91 |
+
print("[SpyLatent] AVISO: VAE não fornecido. A funcionalidade de visualização de imagem está desativada.")
|
| 92 |
+
|
| 93 |
+
def inspect(
|
| 94 |
+
self,
|
| 95 |
+
tensor: torch.Tensor,
|
| 96 |
+
tag: str,
|
| 97 |
+
reference_shape_5d: tuple = None,
|
| 98 |
+
save_visual: bool = True,
|
| 99 |
+
):
|
| 100 |
+
"""
|
| 101 |
+
Inspeciona um tensor latente.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
tensor (torch.Tensor): O tensor a ser inspecionado.
|
| 105 |
+
tag (str): Um rótulo para identificar o ponto de inspeção nos logs.
|
| 106 |
+
reference_shape_5d (tuple, optional): A forma 5D de referência (B, C, F, H, W)
|
| 107 |
+
necessária se o tensor de entrada for 3D.
|
| 108 |
+
save_visual (bool): Se True, decodifica com o VAE e salva uma imagem.
|
| 109 |
+
"""
|
| 110 |
+
#print(f"\n--- [INSPEÇÃO DE LATENTE: {tag}] ---")
|
| 111 |
+
#if not isinstance(tensor, torch.Tensor):
|
| 112 |
+
# print(f" AVISO: O objeto fornecido para '{tag}' não é um tensor.")
|
| 113 |
+
# print("--- [FIM DA INSPEÇÃO] ---\n")
|
| 114 |
+
# return
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
# --- Imprime Estatísticas do Tensor Original ---
|
| 118 |
+
#self._print_stats("Tensor Original", tensor)
|
| 119 |
+
|
| 120 |
+
# --- Converte para 5D se necessário ---
|
| 121 |
+
tensor_5d = self._to_5d(tensor, reference_shape_5d)
|
| 122 |
+
if tensor_5d is not None and tensor.ndim == 3:
|
| 123 |
+
self._print_stats("Convertido para 5D", tensor_5d)
|
| 124 |
+
|
| 125 |
+
# --- Visualização com VAE ---
|
| 126 |
+
if save_visual and self.vae is not None and tensor_5d is not None:
|
| 127 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
| 128 |
+
#print(f" VISUALIZAÇÃO (VAE): Salvando imagem em {self.output_dir}...")
|
| 129 |
+
|
| 130 |
+
frame_idx_to_viz = min(1, tensor_5d.shape[2] - 1)
|
| 131 |
+
if frame_idx_to_viz < 0:
|
| 132 |
+
print(" VISUALIZAÇÃO (VAE): Tensor não tem frames para visualizar.")
|
| 133 |
+
else:
|
| 134 |
+
#print(f" VISUALIZAÇÃO (VAE): Usando frame de índice {frame_idx_to_viz}.")
|
| 135 |
+
latent_slice = tensor_5d[:, :, frame_idx_to_viz:frame_idx_to_viz+1, :, :]
|
| 136 |
+
|
| 137 |
+
with torch.no_grad(), torch.autocast(device_type=self.device.type):
|
| 138 |
+
pixel_slice = self.vae.decode(latent_slice / self.vae.config.scaling_factor).sample
|
| 139 |
+
|
| 140 |
+
save_image((pixel_slice / 2 + 0.5).clamp(0, 1), os.path.join(self.output_dir, f"inspect_{tag.lower()}.png"))
|
| 141 |
+
print(" VISUALIZAÇÃO (VAE): Imagem salva.")
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
#print(f" ERRO na inspeção: {e}")
|
| 145 |
+
traceback.print_exc()
|
| 146 |
+
|
| 147 |
+
def _to_5d(self, tensor: torch.Tensor, shape_5d: tuple) -> torch.Tensor:
|
| 148 |
+
"""Converte um tensor 3D patchificado de volta para 5D."""
|
| 149 |
+
if tensor.ndim == 5:
|
| 150 |
+
return tensor
|
| 151 |
+
if tensor.ndim == 3 and shape_5d:
|
| 152 |
+
try:
|
| 153 |
+
b, c, f, h, w = shape_5d
|
| 154 |
+
return rearrange(tensor, "b (f h w) c -> b c f h w", c=c, f=f, h=h, w=w)
|
| 155 |
+
except Exception as e:
|
| 156 |
+
#print(f" AVISO: Erro ao rearranjar tensor 3D para 5D: {e}. A visualização pode falhar.")
|
| 157 |
+
return None
|
| 158 |
+
return None
|
| 159 |
+
|
| 160 |
+
def _print_stats(self, prefix: str, tensor: torch.Tensor):
|
| 161 |
+
"""Helper para imprimir estatísticas de um tensor."""
|
| 162 |
+
mean = tensor.mean().item()
|
| 163 |
+
std = tensor.std().item()
|
| 164 |
+
min_val = tensor.min().item()
|
| 165 |
+
max_val = tensor.max().item()
|
| 166 |
+
print(f" {prefix}: {tensor.shape}")
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
ASPECT_RATIO_1024_BIN = {
|
| 172 |
+
"0.25": [512.0, 2048.0],
|
| 173 |
+
"0.28": [512.0, 1856.0],
|
| 174 |
+
"0.32": [576.0, 1792.0],
|
| 175 |
+
"0.33": [576.0, 1728.0],
|
| 176 |
+
"0.35": [576.0, 1664.0],
|
| 177 |
+
"0.4": [640.0, 1600.0],
|
| 178 |
+
"0.42": [640.0, 1536.0],
|
| 179 |
+
"0.48": [704.0, 1472.0],
|
| 180 |
+
"0.5": [704.0, 1408.0],
|
| 181 |
+
"0.52": [704.0, 1344.0],
|
| 182 |
+
"0.57": [768.0, 1344.0],
|
| 183 |
+
"0.6": [768.0, 1280.0],
|
| 184 |
+
"0.68": [832.0, 1216.0],
|
| 185 |
+
"0.72": [832.0, 1152.0],
|
| 186 |
+
"0.78": [896.0, 1152.0],
|
| 187 |
+
"0.82": [896.0, 1088.0],
|
| 188 |
+
"0.88": [960.0, 1088.0],
|
| 189 |
+
"0.94": [960.0, 1024.0],
|
| 190 |
+
"1.0": [1024.0, 1024.0],
|
| 191 |
+
"1.07": [1024.0, 960.0],
|
| 192 |
+
"1.13": [1088.0, 960.0],
|
| 193 |
+
"1.21": [1088.0, 896.0],
|
| 194 |
+
"1.29": [1152.0, 896.0],
|
| 195 |
+
"1.38": [1152.0, 832.0],
|
| 196 |
+
"1.46": [1216.0, 832.0],
|
| 197 |
+
"1.67": [1280.0, 768.0],
|
| 198 |
+
"1.75": [1344.0, 768.0],
|
| 199 |
+
"2.0": [1408.0, 704.0],
|
| 200 |
+
"2.09": [1472.0, 704.0],
|
| 201 |
+
"2.4": [1536.0, 640.0],
|
| 202 |
+
"2.5": [1600.0, 640.0],
|
| 203 |
+
"3.0": [1728.0, 576.0],
|
| 204 |
+
"4.0": [2048.0, 512.0],
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
ASPECT_RATIO_512_BIN = {
|
| 208 |
+
"0.25": [256.0, 1024.0],
|
| 209 |
+
"0.28": [256.0, 928.0],
|
| 210 |
+
"0.32": [288.0, 896.0],
|
| 211 |
+
"0.33": [288.0, 864.0],
|
| 212 |
+
"0.35": [288.0, 832.0],
|
| 213 |
+
"0.4": [320.0, 800.0],
|
| 214 |
+
"0.42": [320.0, 768.0],
|
| 215 |
+
"0.48": [352.0, 736.0],
|
| 216 |
+
"0.5": [352.0, 704.0],
|
| 217 |
+
"0.52": [352.0, 672.0],
|
| 218 |
+
"0.57": [384.0, 672.0],
|
| 219 |
+
"0.6": [384.0, 640.0],
|
| 220 |
+
"0.68": [416.0, 608.0],
|
| 221 |
+
"0.72": [416.0, 576.0],
|
| 222 |
+
"0.78": [448.0, 576.0],
|
| 223 |
+
"0.82": [448.0, 544.0],
|
| 224 |
+
"0.88": [480.0, 544.0],
|
| 225 |
+
"0.94": [480.0, 512.0],
|
| 226 |
+
"1.0": [512.0, 512.0],
|
| 227 |
+
"1.07": [512.0, 480.0],
|
| 228 |
+
"1.13": [544.0, 480.0],
|
| 229 |
+
"1.21": [544.0, 448.0],
|
| 230 |
+
"1.29": [576.0, 448.0],
|
| 231 |
+
"1.38": [576.0, 416.0],
|
| 232 |
+
"1.46": [608.0, 416.0],
|
| 233 |
+
"1.67": [640.0, 384.0],
|
| 234 |
+
"1.75": [672.0, 384.0],
|
| 235 |
+
"2.0": [704.0, 352.0],
|
| 236 |
+
"2.09": [736.0, 352.0],
|
| 237 |
+
"2.4": [768.0, 320.0],
|
| 238 |
+
"2.5": [800.0, 320.0],
|
| 239 |
+
"3.0": [864.0, 288.0],
|
| 240 |
+
"4.0": [1024.0, 256.0],
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 245 |
+
def retrieve_timesteps(
|
| 246 |
+
scheduler,
|
| 247 |
+
num_inference_steps: Optional[int] = None,
|
| 248 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 249 |
+
timesteps: Optional[List[int]] = None,
|
| 250 |
+
skip_initial_inference_steps: Optional[int] = 0,
|
| 251 |
+
skip_final_inference_steps: Optional[int] = 0,
|
| 252 |
+
**kwargs,
|
| 253 |
+
):
|
| 254 |
+
"""
|
| 255 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 256 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
scheduler (`SchedulerMixin`):
|
| 260 |
+
The scheduler to get timesteps from.
|
| 261 |
+
num_inference_steps (`int`):
|
| 262 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
| 263 |
+
`timesteps` must be `None`.
|
| 264 |
+
device (`str` or `torch.device`, *optional*):
|
| 265 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 266 |
+
timesteps (`List[int]`, *optional*):
|
| 267 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
| 268 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
| 269 |
+
must be `None`.
|
| 270 |
+
max_timestep ('float', *optional*, defaults to 1.0):
|
| 271 |
+
The initial noising level for image-to-image/video-to-video. The list if timestamps will be
|
| 272 |
+
truncated to start with a timestamp greater or equal to this.
|
| 273 |
+
|
| 274 |
+
Returns:
|
| 275 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 276 |
+
second element is the number of inference steps.
|
| 277 |
+
"""
|
| 278 |
+
if timesteps is not None:
|
| 279 |
+
accepts_timesteps = "timesteps" in set(
|
| 280 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 281 |
+
)
|
| 282 |
+
if not accepts_timesteps:
|
| 283 |
+
raise ValueError(
|
| 284 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 285 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 286 |
+
)
|
| 287 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 288 |
+
timesteps = scheduler.timesteps
|
| 289 |
+
num_inference_steps = len(timesteps)
|
| 290 |
+
else:
|
| 291 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 292 |
+
timesteps = scheduler.timesteps
|
| 293 |
+
|
| 294 |
+
if (
|
| 295 |
+
skip_initial_inference_steps < 0
|
| 296 |
+
or skip_final_inference_steps < 0
|
| 297 |
+
or skip_initial_inference_steps + skip_final_inference_steps
|
| 298 |
+
>= num_inference_steps
|
| 299 |
+
):
|
| 300 |
+
raise ValueError(
|
| 301 |
+
"invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
timesteps = timesteps[
|
| 305 |
+
skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
|
| 306 |
+
]
|
| 307 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 308 |
+
num_inference_steps = len(timesteps)
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
print(f"[LTX]LATENTS {latents.shape}")
|
| 312 |
+
except Exception:
|
| 313 |
+
pass
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
return timesteps, num_inference_steps
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
@dataclass
|
| 320 |
+
class ConditioningItem:
|
| 321 |
+
"""
|
| 322 |
+
Defines a single frame-conditioning item - a single frame or a sequence of frames.
|
| 323 |
+
|
| 324 |
+
Attributes:
|
| 325 |
+
media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
|
| 326 |
+
media_frame_number (int): The start-frame number of the media item in the generated video.
|
| 327 |
+
conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
|
| 328 |
+
media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
|
| 329 |
+
media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
|
| 330 |
+
"""
|
| 331 |
+
|
| 332 |
+
media_item: torch.Tensor
|
| 333 |
+
media_frame_number: int
|
| 334 |
+
conditioning_strength: float
|
| 335 |
+
media_x: Optional[int] = None
|
| 336 |
+
media_y: Optional[int] = None
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class LTXVideoPipeline(DiffusionPipeline):
|
| 340 |
+
r"""
|
| 341 |
+
Pipeline for text-to-image generation using LTX-Video.
|
| 342 |
+
|
| 343 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 344 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 345 |
+
|
| 346 |
+
Args:
|
| 347 |
+
vae ([`AutoencoderKL`]):
|
| 348 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 349 |
+
text_encoder ([`T5EncoderModel`]):
|
| 350 |
+
Frozen text-encoder. This uses
|
| 351 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
| 352 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
| 353 |
+
tokenizer (`T5Tokenizer`):
|
| 354 |
+
Tokenizer of class
|
| 355 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 356 |
+
transformer ([`Transformer2DModel`]):
|
| 357 |
+
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
|
| 358 |
+
scheduler ([`SchedulerMixin`]):
|
| 359 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 360 |
+
"""
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
bad_punct_regex = re.compile(
|
| 365 |
+
r"["
|
| 366 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
| 367 |
+
+ r"\)"
|
| 368 |
+
+ r"\("
|
| 369 |
+
+ r"\]"
|
| 370 |
+
+ r"\["
|
| 371 |
+
+ r"\}"
|
| 372 |
+
+ r"\{"
|
| 373 |
+
+ r"\|"
|
| 374 |
+
+ "\\"
|
| 375 |
+
+ r"\/"
|
| 376 |
+
+ r"\*"
|
| 377 |
+
+ r"]{1,}"
|
| 378 |
+
) # noqa
|
| 379 |
+
|
| 380 |
+
_optional_components = [
|
| 381 |
+
"tokenizer",
|
| 382 |
+
"text_encoder",
|
| 383 |
+
"prompt_enhancer_image_caption_model",
|
| 384 |
+
"prompt_enhancer_image_caption_processor",
|
| 385 |
+
"prompt_enhancer_llm_model",
|
| 386 |
+
"prompt_enhancer_llm_tokenizer",
|
| 387 |
+
]
|
| 388 |
+
model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
|
| 389 |
+
|
| 390 |
+
def __init__(
|
| 391 |
+
self,
|
| 392 |
+
tokenizer: T5Tokenizer,
|
| 393 |
+
text_encoder: T5EncoderModel,
|
| 394 |
+
vae: AutoencoderKL,
|
| 395 |
+
transformer: Transformer3DModel,
|
| 396 |
+
scheduler: DPMSolverMultistepScheduler,
|
| 397 |
+
patchifier: Patchifier,
|
| 398 |
+
prompt_enhancer_image_caption_model: AutoModelForCausalLM,
|
| 399 |
+
prompt_enhancer_image_caption_processor: AutoProcessor,
|
| 400 |
+
prompt_enhancer_llm_model: AutoModelForCausalLM,
|
| 401 |
+
prompt_enhancer_llm_tokenizer: AutoTokenizer,
|
| 402 |
+
allowed_inference_steps: Optional[List[float]] = None,
|
| 403 |
+
):
|
| 404 |
+
super().__init__()
|
| 405 |
+
|
| 406 |
+
self.register_modules(
|
| 407 |
+
tokenizer=tokenizer,
|
| 408 |
+
text_encoder=text_encoder,
|
| 409 |
+
vae=vae,
|
| 410 |
+
transformer=transformer,
|
| 411 |
+
scheduler=scheduler,
|
| 412 |
+
patchifier=patchifier,
|
| 413 |
+
prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
|
| 414 |
+
prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
|
| 415 |
+
prompt_enhancer_llm_model=prompt_enhancer_llm_model,
|
| 416 |
+
prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
|
| 420 |
+
self.vae
|
| 421 |
+
)
|
| 422 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 423 |
+
|
| 424 |
+
self.allowed_inference_steps = allowed_inference_steps
|
| 425 |
+
|
| 426 |
+
self.spy = SpyLatent(vae=vae)
|
| 427 |
+
|
| 428 |
+
def mask_text_embeddings(self, emb, mask):
|
| 429 |
+
if emb.shape[0] == 1:
|
| 430 |
+
keep_index = mask.sum().item()
|
| 431 |
+
return emb[:, :, :keep_index, :], keep_index
|
| 432 |
+
else:
|
| 433 |
+
masked_feature = emb * mask[:, None, :, None]
|
| 434 |
+
return masked_feature, emb.shape[2]
|
| 435 |
+
|
| 436 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
| 437 |
+
def encode_prompt(
|
| 438 |
+
self,
|
| 439 |
+
prompt: Union[str, List[str]],
|
| 440 |
+
do_classifier_free_guidance: bool = True,
|
| 441 |
+
negative_prompt: str = "",
|
| 442 |
+
num_images_per_prompt: int = 1,
|
| 443 |
+
device: Optional[torch.device] = None,
|
| 444 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 445 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 446 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
| 447 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
| 448 |
+
text_encoder_max_tokens: int = 256,
|
| 449 |
+
**kwargs,
|
| 450 |
+
):
|
| 451 |
+
r"""
|
| 452 |
+
Encodes the prompt into text encoder hidden states.
|
| 453 |
+
|
| 454 |
+
Args:
|
| 455 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 456 |
+
prompt to be encoded
|
| 457 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 458 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
| 459 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
| 460 |
+
This should be "".
|
| 461 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
| 462 |
+
whether to use classifier free guidance or not
|
| 463 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 464 |
+
number of images that should be generated per prompt
|
| 465 |
+
device: (`torch.device`, *optional*):
|
| 466 |
+
torch device to place the resulting embeddings on
|
| 467 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 468 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 469 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 470 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 471 |
+
Pre-generated negative text embeddings.
|
| 472 |
+
"""
|
| 473 |
+
|
| 474 |
+
if "mask_feature" in kwargs:
|
| 475 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
| 476 |
+
#deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
| 477 |
+
|
| 478 |
+
if device is None:
|
| 479 |
+
device = self._execution_device
|
| 480 |
+
|
| 481 |
+
if prompt is not None and isinstance(prompt, str):
|
| 482 |
+
batch_size = 1
|
| 483 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 484 |
+
batch_size = len(prompt)
|
| 485 |
+
else:
|
| 486 |
+
batch_size = prompt_embeds.shape[0]
|
| 487 |
+
|
| 488 |
+
# See Section 3.1. of the paper.
|
| 489 |
+
max_length = 256
|
| 490 |
+
#(
|
| 491 |
+
# text_encoder_max_tokens # TPU supports only lengths multiple of 128
|
| 492 |
+
#)
|
| 493 |
+
if prompt_embeds is None:
|
| 494 |
+
assert (
|
| 495 |
+
self.text_encoder is not None
|
| 496 |
+
), "You should provide either prompt_embeds or self.text_encoder should not be None,"
|
| 497 |
+
text_enc_device = next(self.text_encoder.parameters()).device
|
| 498 |
+
prompt = self._text_preprocessing(prompt)
|
| 499 |
+
text_inputs = self.tokenizer(
|
| 500 |
+
prompt,
|
| 501 |
+
padding="max_length",
|
| 502 |
+
max_length=max_length,
|
| 503 |
+
truncation=True,
|
| 504 |
+
add_special_tokens=True,
|
| 505 |
+
return_tensors="pt",
|
| 506 |
+
)
|
| 507 |
+
text_input_ids = text_inputs.input_ids
|
| 508 |
+
untruncated_ids = self.tokenizer(
|
| 509 |
+
prompt, padding="longest", return_tensors="pt"
|
| 510 |
+
).input_ids
|
| 511 |
+
|
| 512 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
| 513 |
+
-1
|
| 514 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
| 515 |
+
removed_text = self.tokenizer.batch_decode(
|
| 516 |
+
untruncated_ids[:, max_length - 1 : -1]
|
| 517 |
+
)
|
| 518 |
+
#logger.warning(
|
| 519 |
+
# "The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 520 |
+
# f" {max_length} tokens: {removed_text}"
|
| 521 |
+
#)
|
| 522 |
+
|
| 523 |
+
prompt_attention_mask = text_inputs.attention_mask
|
| 524 |
+
prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
|
| 525 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
| 526 |
+
|
| 527 |
+
prompt_embeds = self.text_encoder(
|
| 528 |
+
text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
|
| 529 |
+
)
|
| 530 |
+
prompt_embeds = prompt_embeds[0]
|
| 531 |
+
|
| 532 |
+
if self.text_encoder is not None:
|
| 533 |
+
dtype = self.text_encoder.dtype
|
| 534 |
+
elif self.transformer is not None:
|
| 535 |
+
dtype = self.transformer.dtype
|
| 536 |
+
else:
|
| 537 |
+
dtype = None
|
| 538 |
+
|
| 539 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 540 |
+
|
| 541 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 542 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 543 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 544 |
+
prompt_embeds = prompt_embeds.view(
|
| 545 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 546 |
+
)
|
| 547 |
+
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
|
| 548 |
+
prompt_attention_mask = prompt_attention_mask.view(
|
| 549 |
+
bs_embed * num_images_per_prompt, -1
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
# get unconditional embeddings for classifier free guidance
|
| 553 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 554 |
+
uncond_tokens = self._text_preprocessing(negative_prompt)
|
| 555 |
+
uncond_tokens = uncond_tokens * batch_size
|
| 556 |
+
max_length = prompt_embeds.shape[1]
|
| 557 |
+
uncond_input = self.tokenizer(
|
| 558 |
+
uncond_tokens,
|
| 559 |
+
padding="max_length",
|
| 560 |
+
max_length=max_length,
|
| 561 |
+
truncation=True,
|
| 562 |
+
return_attention_mask=True,
|
| 563 |
+
add_special_tokens=True,
|
| 564 |
+
return_tensors="pt",
|
| 565 |
+
)
|
| 566 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
| 567 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(
|
| 568 |
+
text_enc_device
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
negative_prompt_embeds = self.text_encoder(
|
| 572 |
+
uncond_input.input_ids.to(text_enc_device),
|
| 573 |
+
attention_mask=negative_prompt_attention_mask,
|
| 574 |
+
)
|
| 575 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 576 |
+
|
| 577 |
+
if do_classifier_free_guidance:
|
| 578 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 579 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 580 |
+
|
| 581 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 582 |
+
dtype=dtype, device=device
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 586 |
+
1, num_images_per_prompt, 1
|
| 587 |
+
)
|
| 588 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 589 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
|
| 593 |
+
1, num_images_per_prompt
|
| 594 |
+
)
|
| 595 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
|
| 596 |
+
bs_embed * num_images_per_prompt, -1
|
| 597 |
+
)
|
| 598 |
+
else:
|
| 599 |
+
negative_prompt_embeds = None
|
| 600 |
+
negative_prompt_attention_mask = None
|
| 601 |
+
|
| 602 |
+
return (
|
| 603 |
+
prompt_embeds,
|
| 604 |
+
prompt_attention_mask,
|
| 605 |
+
negative_prompt_embeds,
|
| 606 |
+
negative_prompt_attention_mask,
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 610 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 611 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 612 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 613 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 614 |
+
# and should be between [0, 1]
|
| 615 |
+
|
| 616 |
+
accepts_eta = "eta" in set(
|
| 617 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 618 |
+
)
|
| 619 |
+
extra_step_kwargs = {}
|
| 620 |
+
if accepts_eta:
|
| 621 |
+
extra_step_kwargs["eta"] = eta
|
| 622 |
+
|
| 623 |
+
# check if the scheduler accepts generator
|
| 624 |
+
accepts_generator = "generator" in set(
|
| 625 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 626 |
+
)
|
| 627 |
+
if accepts_generator:
|
| 628 |
+
extra_step_kwargs["generator"] = generator
|
| 629 |
+
return extra_step_kwargs
|
| 630 |
+
|
| 631 |
+
def check_inputs(
|
| 632 |
+
self,
|
| 633 |
+
prompt,
|
| 634 |
+
height,
|
| 635 |
+
width,
|
| 636 |
+
negative_prompt,
|
| 637 |
+
prompt_embeds=None,
|
| 638 |
+
negative_prompt_embeds=None,
|
| 639 |
+
prompt_attention_mask=None,
|
| 640 |
+
negative_prompt_attention_mask=None,
|
| 641 |
+
enhance_prompt=False,
|
| 642 |
+
):
|
| 643 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 644 |
+
raise ValueError(
|
| 645 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
if prompt is not None and prompt_embeds is not None:
|
| 649 |
+
raise ValueError(
|
| 650 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 651 |
+
" only forward one of the two."
|
| 652 |
+
)
|
| 653 |
+
elif prompt is None and prompt_embeds is None:
|
| 654 |
+
raise ValueError(
|
| 655 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 656 |
+
)
|
| 657 |
+
elif prompt is not None and (
|
| 658 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 659 |
+
):
|
| 660 |
+
raise ValueError(
|
| 661 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
| 665 |
+
raise ValueError(
|
| 666 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
| 667 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 671 |
+
raise ValueError(
|
| 672 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 673 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
| 677 |
+
raise ValueError(
|
| 678 |
+
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
if (
|
| 682 |
+
negative_prompt_embeds is not None
|
| 683 |
+
and negative_prompt_attention_mask is None
|
| 684 |
+
):
|
| 685 |
+
raise ValueError(
|
| 686 |
+
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 690 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 691 |
+
raise ValueError(
|
| 692 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 693 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 694 |
+
f" {negative_prompt_embeds.shape}."
|
| 695 |
+
)
|
| 696 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
| 697 |
+
raise ValueError(
|
| 698 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
| 699 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
| 700 |
+
f" {negative_prompt_attention_mask.shape}."
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
if enhance_prompt:
|
| 704 |
+
assert (
|
| 705 |
+
self.prompt_enhancer_image_caption_model is not None
|
| 706 |
+
), "Image caption model must be initialized if enhance_prompt is True"
|
| 707 |
+
assert (
|
| 708 |
+
self.prompt_enhancer_image_caption_processor is not None
|
| 709 |
+
), "Image caption processor must be initialized if enhance_prompt is True"
|
| 710 |
+
assert (
|
| 711 |
+
self.prompt_enhancer_llm_model is not None
|
| 712 |
+
), "Text prompt enhancer model must be initialized if enhance_prompt is True"
|
| 713 |
+
assert (
|
| 714 |
+
self.prompt_enhancer_llm_tokenizer is not None
|
| 715 |
+
), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
|
| 716 |
+
|
| 717 |
+
def _text_preprocessing(self, text):
|
| 718 |
+
if not isinstance(text, (tuple, list)):
|
| 719 |
+
text = [text]
|
| 720 |
+
|
| 721 |
+
def process(text: str):
|
| 722 |
+
text = text.strip()
|
| 723 |
+
return text
|
| 724 |
+
|
| 725 |
+
return [process(t) for t in text]
|
| 726 |
+
|
| 727 |
+
@staticmethod
|
| 728 |
+
def add_noise_to_image_conditioning_latents(
|
| 729 |
+
t: float,
|
| 730 |
+
init_latents: torch.Tensor,
|
| 731 |
+
latents: torch.Tensor,
|
| 732 |
+
noise_scale: float,
|
| 733 |
+
conditioning_mask: torch.Tensor,
|
| 734 |
+
generator,
|
| 735 |
+
eps=1e-6,
|
| 736 |
+
):
|
| 737 |
+
"""
|
| 738 |
+
Add timestep-dependent noise to the hard-conditioning latents.
|
| 739 |
+
This helps with motion continuity, especially when conditioned on a single frame.
|
| 740 |
+
"""
|
| 741 |
+
noise = randn_tensor(
|
| 742 |
+
latents.shape,
|
| 743 |
+
generator=generator,
|
| 744 |
+
device=latents.device,
|
| 745 |
+
dtype=latents.dtype,
|
| 746 |
+
)
|
| 747 |
+
# Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
|
| 748 |
+
need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
|
| 749 |
+
noised_latents = init_latents + noise_scale * noise * (t**2)
|
| 750 |
+
latents = torch.where(need_to_noise, noised_latents, latents)
|
| 751 |
+
return latents
|
| 752 |
+
|
| 753 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 754 |
+
def prepare_latents(
|
| 755 |
+
self,
|
| 756 |
+
latents: torch.Tensor | None,
|
| 757 |
+
media_items: torch.Tensor | None,
|
| 758 |
+
timestep: float,
|
| 759 |
+
latent_shape: torch.Size | Tuple[Any, ...],
|
| 760 |
+
dtype: torch.dtype,
|
| 761 |
+
device: torch.device,
|
| 762 |
+
generator: torch.Generator | List[torch.Generator],
|
| 763 |
+
vae_per_channel_normalize: bool = True,
|
| 764 |
+
):
|
| 765 |
+
"""
|
| 766 |
+
Prepare the initial latent tensor to be denoised.
|
| 767 |
+
The latents are either pure noise or a noised version of the encoded media items.
|
| 768 |
+
Args:
|
| 769 |
+
latents (`torch.FloatTensor` or `None`):
|
| 770 |
+
The latents to use (provided by the user) or `None` to create new latents.
|
| 771 |
+
media_items (`torch.FloatTensor` or `None`):
|
| 772 |
+
An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
|
| 773 |
+
timestep (`float`):
|
| 774 |
+
The timestep to noise the encoded media_items to.
|
| 775 |
+
latent_shape (`torch.Size`):
|
| 776 |
+
The target latent shape.
|
| 777 |
+
dtype (`torch.dtype`):
|
| 778 |
+
The target dtype.
|
| 779 |
+
device (`torch.device`):
|
| 780 |
+
The target device.
|
| 781 |
+
generator (`torch.Generator` or `List[torch.Generator]`):
|
| 782 |
+
Generator(s) to be used for the noising process.
|
| 783 |
+
vae_per_channel_normalize ('bool'):
|
| 784 |
+
When encoding the media_items, whether to normalize the latents per-channel.
|
| 785 |
+
Returns:
|
| 786 |
+
`torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
|
| 787 |
+
(batch_size, num_channels, height, width).
|
| 788 |
+
"""
|
| 789 |
+
if isinstance(generator, list) and len(generator) != latent_shape[0]:
|
| 790 |
+
raise ValueError(
|
| 791 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 792 |
+
f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
|
| 793 |
+
)
|
| 794 |
+
|
| 795 |
+
# Initialize the latents with the given latents or encoded media item, if provided
|
| 796 |
+
assert (
|
| 797 |
+
latents is None or media_items is None
|
| 798 |
+
), "Cannot provide both latents and media_items. Please provide only one of the two."
|
| 799 |
+
|
| 800 |
+
assert (
|
| 801 |
+
latents is None and media_items is None or timestep < 1.0
|
| 802 |
+
), "Input media_item or latents are provided, but they will be replaced with noise."
|
| 803 |
+
|
| 804 |
+
if media_items is not None:
|
| 805 |
+
latents = vae_encode(
|
| 806 |
+
media_items.to(dtype=self.vae.dtype, device=self.vae.device),
|
| 807 |
+
self.vae,
|
| 808 |
+
vae_per_channel_normalize=vae_per_channel_normalize,
|
| 809 |
+
)
|
| 810 |
+
if latents is not None:
|
| 811 |
+
assert (
|
| 812 |
+
latents.shape == latent_shape
|
| 813 |
+
), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
|
| 814 |
+
latents = latents.to(device=device, dtype=dtype)
|
| 815 |
+
|
| 816 |
+
# For backward compatibility, generate in the "patchified" shape and rearrange
|
| 817 |
+
b, c, f, h, w = latent_shape
|
| 818 |
+
noise = randn_tensor(
|
| 819 |
+
(b, f * h * w, c), generator=generator, device=device, dtype=dtype
|
| 820 |
+
)
|
| 821 |
+
noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
|
| 822 |
+
|
| 823 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 824 |
+
noise = noise * self.scheduler.init_noise_sigma
|
| 825 |
+
|
| 826 |
+
if latents is None:
|
| 827 |
+
latents = noise
|
| 828 |
+
else:
|
| 829 |
+
# Noise the latents to the required (first) timestep
|
| 830 |
+
latents = timestep * noise + (1 - timestep) * latents
|
| 831 |
+
|
| 832 |
+
return latents
|
| 833 |
+
|
| 834 |
+
@staticmethod
|
| 835 |
+
def classify_height_width_bin(
|
| 836 |
+
height: int, width: int, ratios: dict
|
| 837 |
+
) -> Tuple[int, int]:
|
| 838 |
+
"""Returns binned height and width."""
|
| 839 |
+
ar = float(height / width)
|
| 840 |
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
| 841 |
+
default_hw = ratios[closest_ratio]
|
| 842 |
+
return int(default_hw[0]), int(default_hw[1])
|
| 843 |
+
|
| 844 |
+
@staticmethod
|
| 845 |
+
def resize_and_crop_tensor(
|
| 846 |
+
samples: torch.Tensor, new_width: int, new_height: int
|
| 847 |
+
) -> torch.Tensor:
|
| 848 |
+
n_frames, orig_height, orig_width = samples.shape[-3:]
|
| 849 |
+
|
| 850 |
+
# Check if resizing is needed
|
| 851 |
+
if orig_height != new_height or orig_width != new_width:
|
| 852 |
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
| 853 |
+
resized_width = int(orig_width * ratio)
|
| 854 |
+
resized_height = int(orig_height * ratio)
|
| 855 |
+
|
| 856 |
+
# Resize
|
| 857 |
+
samples = LTXVideoPipeline.resize_tensor(
|
| 858 |
+
samples, resized_height, resized_width
|
| 859 |
+
)
|
| 860 |
+
|
| 861 |
+
# Center Crop
|
| 862 |
+
start_x = (resized_width - new_width) // 2
|
| 863 |
+
end_x = start_x + new_width
|
| 864 |
+
start_y = (resized_height - new_height) // 2
|
| 865 |
+
end_y = start_y + new_height
|
| 866 |
+
samples = samples[..., start_y:end_y, start_x:end_x]
|
| 867 |
+
|
| 868 |
+
return samples
|
| 869 |
+
|
| 870 |
+
@staticmethod
|
| 871 |
+
def resize_tensor(media_items, height, width):
|
| 872 |
+
n_frames = media_items.shape[2]
|
| 873 |
+
if media_items.shape[-2:] != (height, width):
|
| 874 |
+
media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
|
| 875 |
+
media_items = F.interpolate(
|
| 876 |
+
media_items,
|
| 877 |
+
size=(height, width),
|
| 878 |
+
mode="bilinear",
|
| 879 |
+
align_corners=False,
|
| 880 |
+
)
|
| 881 |
+
media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
|
| 882 |
+
return media_items
|
| 883 |
+
|
| 884 |
+
@torch.no_grad()
|
| 885 |
+
def __call__(
|
| 886 |
+
self,
|
| 887 |
+
height: int,
|
| 888 |
+
width: int,
|
| 889 |
+
num_frames: int,
|
| 890 |
+
frame_rate: float,
|
| 891 |
+
prompt: Union[str, List[str]] = None,
|
| 892 |
+
negative_prompt: str = "",
|
| 893 |
+
num_inference_steps: int = 20,
|
| 894 |
+
skip_initial_inference_steps: int = 0,
|
| 895 |
+
skip_final_inference_steps: int = 0,
|
| 896 |
+
timesteps: List[int] = None,
|
| 897 |
+
guidance_scale: Union[float, List[float]] = 4.5,
|
| 898 |
+
cfg_star_rescale: bool = False,
|
| 899 |
+
skip_layer_strategy: Optional[SkipLayerStrategy] = None,
|
| 900 |
+
skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
|
| 901 |
+
stg_scale: Union[float, List[float]] = 1.0,
|
| 902 |
+
rescaling_scale: Union[float, List[float]] = 0.7,
|
| 903 |
+
guidance_timesteps: Optional[List[int]] = None,
|
| 904 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 905 |
+
eta: float = 0.0,
|
| 906 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 907 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 908 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 909 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
| 910 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 911 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
| 912 |
+
output_type: Optional[str] = "pil",
|
| 913 |
+
return_dict: bool = True,
|
| 914 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 915 |
+
conditioning_items: Optional[List[ConditioningItem]] = None,
|
| 916 |
+
decode_timestep: Union[List[float], float] = 0.0,
|
| 917 |
+
decode_noise_scale: Optional[List[float]] = None,
|
| 918 |
+
mixed_precision: bool = False,
|
| 919 |
+
offload_to_cpu: bool = False,
|
| 920 |
+
enhance_prompt: bool = False,
|
| 921 |
+
text_encoder_max_tokens: int = 256,
|
| 922 |
+
stochastic_sampling: bool = False,
|
| 923 |
+
media_items: Optional[torch.Tensor] = None,
|
| 924 |
+
tone_map_compression_ratio: float = 0.0,
|
| 925 |
+
**kwargs,
|
| 926 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
| 927 |
+
"""
|
| 928 |
+
Function invoked when calling the pipeline for generation.
|
| 929 |
+
|
| 930 |
+
Args:
|
| 931 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 932 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 933 |
+
instead.
|
| 934 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 935 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 936 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 937 |
+
less than `1`).
|
| 938 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
| 939 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 940 |
+
expense of slower inference. If `timesteps` is provided, this parameter is ignored.
|
| 941 |
+
skip_initial_inference_steps (`int`, *optional*, defaults to 0):
|
| 942 |
+
The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
|
| 943 |
+
be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
|
| 944 |
+
skip_final_inference_steps (`int`, *optional*, defaults to 0):
|
| 945 |
+
The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
|
| 946 |
+
be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
|
| 947 |
+
timesteps (`List[int]`, *optional*):
|
| 948 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
| 949 |
+
timesteps are used. Must be in descending order.
|
| 950 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
| 951 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 952 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 953 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 954 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 955 |
+
usually at the expense of lower image quality.
|
| 956 |
+
cfg_star_rescale (`bool`, *optional*, defaults to `False`):
|
| 957 |
+
If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
|
| 958 |
+
product between positive and negative.
|
| 959 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 960 |
+
The number of images to generate per prompt.
|
| 961 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 962 |
+
The height in pixels of the generated image.
|
| 963 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 964 |
+
The width in pixels of the generated image.
|
| 965 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 966 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 967 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 968 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 969 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 970 |
+
to make generation deterministic.
|
| 971 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 972 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 973 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 974 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 975 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 976 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 977 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 978 |
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
| 979 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 980 |
+
Pre-generated negative text embeddings. This negative prompt should be "". If not
|
| 981 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
| 982 |
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
| 983 |
+
Pre-generated attention mask for negative text embeddings.
|
| 984 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 985 |
+
The output format of the generate image. Choose between
|
| 986 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 987 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 988 |
+
Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
| 989 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 990 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 991 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 992 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 993 |
+
`callback_on_step_end_tensor_inputs`.
|
| 994 |
+
use_resolution_binning (`bool` defaults to `True`):
|
| 995 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
| 996 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
| 997 |
+
the requested resolution. Useful for generating non-square images.
|
| 998 |
+
enhance_prompt (`bool`, *optional*, defaults to `False`):
|
| 999 |
+
If set to `True`, the prompt is enhanced using a LLM model.
|
| 1000 |
+
text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
|
| 1001 |
+
The maximum number of tokens to use for the text encoder.
|
| 1002 |
+
stochastic_sampling (`bool`, *optional*, defaults to `False`):
|
| 1003 |
+
If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
|
| 1004 |
+
media_items ('torch.Tensor', *optional*):
|
| 1005 |
+
The input media item used for image-to-image / video-to-video.
|
| 1006 |
+
tone_map_compression_ratio: compression ratio for tone mapping, defaults to 0.0.
|
| 1007 |
+
If set to 0.0, no tone mapping is applied. If set to 1.0 - full compression is applied.
|
| 1008 |
+
Examples:
|
| 1009 |
+
Returns:
|
| 1010 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
| 1011 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
| 1012 |
+
returned where the first element is a list with the generated images
|
| 1013 |
+
"""
|
| 1014 |
+
|
| 1015 |
+
try:
|
| 1016 |
+
print(f"[LTX]LATENTS {latents.shape}")
|
| 1017 |
+
except Exception:
|
| 1018 |
+
pass
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
if "mask_feature" in kwargs:
|
| 1022 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
| 1023 |
+
#deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
| 1024 |
+
|
| 1025 |
+
is_video = kwargs.get("is_video", False)
|
| 1026 |
+
self.check_inputs(
|
| 1027 |
+
prompt,
|
| 1028 |
+
height,
|
| 1029 |
+
width,
|
| 1030 |
+
negative_prompt,
|
| 1031 |
+
prompt_embeds,
|
| 1032 |
+
negative_prompt_embeds,
|
| 1033 |
+
prompt_attention_mask,
|
| 1034 |
+
negative_prompt_attention_mask,
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
# 2. Default height and width to transformer
|
| 1038 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1039 |
+
batch_size = 1
|
| 1040 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1041 |
+
batch_size = len(prompt)
|
| 1042 |
+
else:
|
| 1043 |
+
batch_size = prompt_embeds.shape[0]
|
| 1044 |
+
|
| 1045 |
+
device = self._execution_device
|
| 1046 |
+
|
| 1047 |
+
self.video_scale_factor = self.video_scale_factor if is_video else 1
|
| 1048 |
+
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
|
| 1049 |
+
image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
|
| 1050 |
+
|
| 1051 |
+
latent_height = height // self.vae_scale_factor
|
| 1052 |
+
latent_width = width // self.vae_scale_factor
|
| 1053 |
+
latent_num_frames = num_frames // self.video_scale_factor
|
| 1054 |
+
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
|
| 1055 |
+
latent_num_frames += 1
|
| 1056 |
+
latent_shape = (
|
| 1057 |
+
batch_size * num_images_per_prompt,
|
| 1058 |
+
self.transformer.config.in_channels,
|
| 1059 |
+
latent_num_frames,
|
| 1060 |
+
latent_height,
|
| 1061 |
+
latent_width,
|
| 1062 |
+
)
|
| 1063 |
+
|
| 1064 |
+
# Prepare the list of denoising time-steps
|
| 1065 |
+
|
| 1066 |
+
retrieve_timesteps_kwargs = {}
|
| 1067 |
+
if isinstance(self.scheduler, TimestepShifter):
|
| 1068 |
+
retrieve_timesteps_kwargs["samples_shape"] = latent_shape
|
| 1069 |
+
|
| 1070 |
+
assert (
|
| 1071 |
+
skip_initial_inference_steps == 0
|
| 1072 |
+
or latents is not None
|
| 1073 |
+
or media_items is not None
|
| 1074 |
+
), (
|
| 1075 |
+
f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
|
| 1076 |
+
"media_item or latents should be provided."
|
| 1077 |
+
)
|
| 1078 |
+
|
| 1079 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1080 |
+
self.scheduler,
|
| 1081 |
+
num_inference_steps,
|
| 1082 |
+
device,
|
| 1083 |
+
timesteps,
|
| 1084 |
+
skip_initial_inference_steps=skip_initial_inference_steps,
|
| 1085 |
+
skip_final_inference_steps=skip_final_inference_steps,
|
| 1086 |
+
**retrieve_timesteps_kwargs,
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
try:
|
| 1090 |
+
print(f"[LTX2]LATENTS {latents.shape}")
|
| 1091 |
+
except Exception:
|
| 1092 |
+
pass
|
| 1093 |
+
|
| 1094 |
+
if self.allowed_inference_steps is not None:
|
| 1095 |
+
for timestep in [round(x, 4) for x in timesteps.tolist()]:
|
| 1096 |
+
assert (
|
| 1097 |
+
timestep in self.allowed_inference_steps
|
| 1098 |
+
), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
|
| 1099 |
+
|
| 1100 |
+
if guidance_timesteps:
|
| 1101 |
+
guidance_mapping = []
|
| 1102 |
+
for timestep in timesteps:
|
| 1103 |
+
indices = [
|
| 1104 |
+
i for i, val in enumerate(guidance_timesteps) if val <= timestep
|
| 1105 |
+
]
|
| 1106 |
+
# assert len(indices) > 0, f"No guidance timestep found for {timestep}"
|
| 1107 |
+
guidance_mapping.append(
|
| 1108 |
+
indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
|
| 1109 |
+
)
|
| 1110 |
+
|
| 1111 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1112 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1113 |
+
# corresponds to doing no classifier free guidance.
|
| 1114 |
+
if not isinstance(guidance_scale, List):
|
| 1115 |
+
guidance_scale = [guidance_scale] * len(timesteps)
|
| 1116 |
+
else:
|
| 1117 |
+
guidance_scale = [
|
| 1118 |
+
guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
|
| 1119 |
+
]
|
| 1120 |
+
|
| 1121 |
+
if not isinstance(stg_scale, List):
|
| 1122 |
+
stg_scale = [stg_scale] * len(timesteps)
|
| 1123 |
+
else:
|
| 1124 |
+
stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
|
| 1125 |
+
|
| 1126 |
+
if not isinstance(rescaling_scale, List):
|
| 1127 |
+
rescaling_scale = [rescaling_scale] * len(timesteps)
|
| 1128 |
+
else:
|
| 1129 |
+
rescaling_scale = [
|
| 1130 |
+
rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
|
| 1131 |
+
]
|
| 1132 |
+
|
| 1133 |
+
# Normalize skip_block_list to always be None or a list of lists matching timesteps
|
| 1134 |
+
if skip_block_list is not None:
|
| 1135 |
+
# Convert single list to list of lists if needed
|
| 1136 |
+
if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
|
| 1137 |
+
skip_block_list = [skip_block_list] * len(timesteps)
|
| 1138 |
+
else:
|
| 1139 |
+
new_skip_block_list = []
|
| 1140 |
+
for i, timestep in enumerate(timesteps):
|
| 1141 |
+
new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
|
| 1142 |
+
skip_block_list = new_skip_block_list
|
| 1143 |
+
|
| 1144 |
+
if enhance_prompt:
|
| 1145 |
+
self.prompt_enhancer_image_caption_model = (
|
| 1146 |
+
self.prompt_enhancer_image_caption_model.to(self._execution_device)
|
| 1147 |
+
)
|
| 1148 |
+
self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
|
| 1149 |
+
self._execution_device
|
| 1150 |
+
)
|
| 1151 |
+
|
| 1152 |
+
prompt = generate_cinematic_prompt(
|
| 1153 |
+
self.prompt_enhancer_image_caption_model,
|
| 1154 |
+
self.prompt_enhancer_image_caption_processor,
|
| 1155 |
+
self.prompt_enhancer_llm_model,
|
| 1156 |
+
self.prompt_enhancer_llm_tokenizer,
|
| 1157 |
+
prompt,
|
| 1158 |
+
conditioning_items,
|
| 1159 |
+
max_new_tokens=text_encoder_max_tokens,
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
try:
|
| 1163 |
+
print(f"[LTX3]LATENTS {latents.shape}")
|
| 1164 |
+
except Exception:
|
| 1165 |
+
pass
|
| 1166 |
+
|
| 1167 |
+
# 3. Encode input prompt
|
| 1168 |
+
if self.text_encoder is not None:
|
| 1169 |
+
self.text_encoder = self.text_encoder.to(self._execution_device)
|
| 1170 |
+
|
| 1171 |
+
(
|
| 1172 |
+
prompt_embeds,
|
| 1173 |
+
prompt_attention_mask,
|
| 1174 |
+
negative_prompt_embeds,
|
| 1175 |
+
negative_prompt_attention_mask,
|
| 1176 |
+
) = self.encode_prompt(
|
| 1177 |
+
prompt,
|
| 1178 |
+
True,
|
| 1179 |
+
negative_prompt=negative_prompt,
|
| 1180 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1181 |
+
device=device,
|
| 1182 |
+
prompt_embeds=prompt_embeds,
|
| 1183 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1184 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 1185 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 1186 |
+
text_encoder_max_tokens=text_encoder_max_tokens,
|
| 1187 |
+
)
|
| 1188 |
+
|
| 1189 |
+
if offload_to_cpu and self.text_encoder is not None:
|
| 1190 |
+
self.text_encoder = self.text_encoder.cpu()
|
| 1191 |
+
|
| 1192 |
+
self.transformer = self.transformer.to(self._execution_device)
|
| 1193 |
+
|
| 1194 |
+
prompt_embeds_batch = prompt_embeds
|
| 1195 |
+
prompt_attention_mask_batch = prompt_attention_mask
|
| 1196 |
+
negative_prompt_embeds = (
|
| 1197 |
+
torch.zeros_like(prompt_embeds)
|
| 1198 |
+
if negative_prompt_embeds is None
|
| 1199 |
+
else negative_prompt_embeds
|
| 1200 |
+
)
|
| 1201 |
+
negative_prompt_attention_mask = (
|
| 1202 |
+
torch.zeros_like(prompt_attention_mask)
|
| 1203 |
+
if negative_prompt_attention_mask is None
|
| 1204 |
+
else negative_prompt_attention_mask
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
prompt_embeds_batch = torch.cat(
|
| 1208 |
+
[negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0
|
| 1209 |
+
)
|
| 1210 |
+
prompt_attention_mask_batch = torch.cat(
|
| 1211 |
+
[
|
| 1212 |
+
negative_prompt_attention_mask,
|
| 1213 |
+
prompt_attention_mask,
|
| 1214 |
+
prompt_attention_mask,
|
| 1215 |
+
],
|
| 1216 |
+
dim=0,
|
| 1217 |
+
)
|
| 1218 |
+
# 4. Prepare the initial latents using the provided media and conditioning items
|
| 1219 |
+
|
| 1220 |
+
# Prepare the initial latents tensor, shape = (b, c, f, h, w)
|
| 1221 |
+
latents = self.prepare_latents(
|
| 1222 |
+
latents=latents,
|
| 1223 |
+
media_items=media_items,
|
| 1224 |
+
timestep=timesteps[0],
|
| 1225 |
+
latent_shape=latent_shape,
|
| 1226 |
+
dtype=prompt_embeds.dtype,
|
| 1227 |
+
device=device,
|
| 1228 |
+
generator=generator,
|
| 1229 |
+
vae_per_channel_normalize=vae_per_channel_normalize,
|
| 1230 |
+
)
|
| 1231 |
+
|
| 1232 |
+
try:
|
| 1233 |
+
print(f"[LTX4]LATENTS {latents.shape}")
|
| 1234 |
+
original_shape = latents
|
| 1235 |
+
except Exception:
|
| 1236 |
+
pass
|
| 1237 |
+
|
| 1238 |
+
|
| 1239 |
+
|
| 1240 |
+
# Update the latents with the conditioning items and patchify them into (b, n, c)
|
| 1241 |
+
latents, pixel_coords, conditioning_mask, num_cond_latents = (
|
| 1242 |
+
self.prepare_conditioning(
|
| 1243 |
+
conditioning_items=conditioning_items,
|
| 1244 |
+
init_latents=latents,
|
| 1245 |
+
num_frames=num_frames,
|
| 1246 |
+
height=height,
|
| 1247 |
+
width=width,
|
| 1248 |
+
vae_per_channel_normalize=vae_per_channel_normalize,
|
| 1249 |
+
generator=generator,
|
| 1250 |
+
)
|
| 1251 |
+
)
|
| 1252 |
+
init_latents = latents.clone() # Used for image_cond_noise_update
|
| 1253 |
+
|
| 1254 |
+
try:
|
| 1255 |
+
print(f"[LTXCond]conditioning_mask {conditioning_mask.shape}")
|
| 1256 |
+
except Exception:
|
| 1257 |
+
pass
|
| 1258 |
+
|
| 1259 |
+
try:
|
| 1260 |
+
print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
|
| 1261 |
+
except Exception:
|
| 1262 |
+
pass
|
| 1263 |
+
|
| 1264 |
+
try:
|
| 1265 |
+
print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
|
| 1266 |
+
except Exception:
|
| 1267 |
+
pass
|
| 1268 |
+
|
| 1269 |
+
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1273 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1274 |
+
|
| 1275 |
+
|
| 1276 |
+
try:
|
| 1277 |
+
print(f"[LTX5]LATENTS {latents.shape}")
|
| 1278 |
+
except Exception:
|
| 1279 |
+
pass
|
| 1280 |
+
|
| 1281 |
+
# 7. Denoising loop
|
| 1282 |
+
num_warmup_steps = max(
|
| 1283 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
| 1284 |
+
)
|
| 1285 |
+
|
| 1286 |
+
orig_conditioning_mask = conditioning_mask
|
| 1287 |
+
|
| 1288 |
+
# Befor compiling this code please be aware:
|
| 1289 |
+
# This code might generate different input shapes if some timesteps have no STG or CFG.
|
| 1290 |
+
# This means that the codes might need to be compiled mutliple times.
|
| 1291 |
+
# To avoid that, use the same STG and CFG values for all timesteps.
|
| 1292 |
+
|
| 1293 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1294 |
+
for i, t in enumerate(timesteps):
|
| 1295 |
+
do_classifier_free_guidance = guidance_scale[i] > 1.0
|
| 1296 |
+
do_spatio_temporal_guidance = stg_scale[i] > 0
|
| 1297 |
+
do_rescaling = rescaling_scale[i] != 1.0
|
| 1298 |
+
|
| 1299 |
+
num_conds = 1
|
| 1300 |
+
if do_classifier_free_guidance:
|
| 1301 |
+
num_conds += 1
|
| 1302 |
+
if do_spatio_temporal_guidance:
|
| 1303 |
+
num_conds += 1
|
| 1304 |
+
|
| 1305 |
+
if do_classifier_free_guidance and do_spatio_temporal_guidance:
|
| 1306 |
+
indices = slice(batch_size * 0, batch_size * 3)
|
| 1307 |
+
elif do_classifier_free_guidance:
|
| 1308 |
+
indices = slice(batch_size * 0, batch_size * 2)
|
| 1309 |
+
elif do_spatio_temporal_guidance:
|
| 1310 |
+
indices = slice(batch_size * 1, batch_size * 3)
|
| 1311 |
+
else:
|
| 1312 |
+
indices = slice(batch_size * 1, batch_size * 2)
|
| 1313 |
+
|
| 1314 |
+
# Prepare skip layer masks
|
| 1315 |
+
skip_layer_mask: Optional[torch.Tensor] = None
|
| 1316 |
+
if do_spatio_temporal_guidance:
|
| 1317 |
+
if skip_block_list is not None:
|
| 1318 |
+
skip_layer_mask = self.transformer.create_skip_layer_mask(
|
| 1319 |
+
batch_size, num_conds, num_conds - 1, skip_block_list[i]
|
| 1320 |
+
)
|
| 1321 |
+
|
| 1322 |
+
batch_pixel_coords = torch.cat([pixel_coords] * num_conds)
|
| 1323 |
+
conditioning_mask = orig_conditioning_mask
|
| 1324 |
+
if conditioning_mask is not None and is_video:
|
| 1325 |
+
assert num_images_per_prompt == 1
|
| 1326 |
+
conditioning_mask = torch.cat([conditioning_mask] * num_conds)
|
| 1327 |
+
fractional_coords = batch_pixel_coords.to(torch.float32)
|
| 1328 |
+
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
|
| 1329 |
+
|
| 1330 |
+
if conditioning_mask is not None and image_cond_noise_scale > 0.0:
|
| 1331 |
+
latents = self.add_noise_to_image_conditioning_latents(
|
| 1332 |
+
t,
|
| 1333 |
+
init_latents,
|
| 1334 |
+
latents,
|
| 1335 |
+
image_cond_noise_scale,
|
| 1336 |
+
orig_conditioning_mask,
|
| 1337 |
+
generator,
|
| 1338 |
+
)
|
| 1339 |
+
|
| 1340 |
+
try:
|
| 1341 |
+
print(f"[LTX6]LATENTS {latents.shape}")
|
| 1342 |
+
self.spy.inspect(latents, "LTX6_After_Patchify", reference_shape_5d=original_shape)
|
| 1343 |
+
except Exception:
|
| 1344 |
+
pass
|
| 1345 |
+
|
| 1346 |
+
|
| 1347 |
+
|
| 1348 |
+
latent_model_input = (
|
| 1349 |
+
torch.cat([latents] * num_conds) if num_conds > 1 else latents
|
| 1350 |
+
)
|
| 1351 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 1352 |
+
latent_model_input, t
|
| 1353 |
+
)
|
| 1354 |
+
|
| 1355 |
+
try:
|
| 1356 |
+
print(f"[LTX7]LATENTS {latent_model_input.shape}")
|
| 1357 |
+
self.spy.inspect(latents, "LTX7_After_Patchify", reference_shape_5d=original_shape)
|
| 1358 |
+
except Exception:
|
| 1359 |
+
pass
|
| 1360 |
+
|
| 1361 |
+
current_timestep = t
|
| 1362 |
+
if not torch.is_tensor(current_timestep):
|
| 1363 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 1364 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 1365 |
+
is_mps = latent_model_input.device.type == "mps"
|
| 1366 |
+
if isinstance(current_timestep, float):
|
| 1367 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 1368 |
+
else:
|
| 1369 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 1370 |
+
current_timestep = torch.tensor(
|
| 1371 |
+
[current_timestep],
|
| 1372 |
+
dtype=dtype,
|
| 1373 |
+
device=latent_model_input.device,
|
| 1374 |
+
)
|
| 1375 |
+
elif len(current_timestep.shape) == 0:
|
| 1376 |
+
current_timestep = current_timestep[None].to(
|
| 1377 |
+
latent_model_input.device
|
| 1378 |
+
)
|
| 1379 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1380 |
+
current_timestep = current_timestep.expand(
|
| 1381 |
+
latent_model_input.shape[0]
|
| 1382 |
+
).unsqueeze(-1)
|
| 1383 |
+
|
| 1384 |
+
if conditioning_mask is not None:
|
| 1385 |
+
# Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
|
| 1386 |
+
# and will start to be denoised when the current timestep is lower than their conditioning timestep.
|
| 1387 |
+
current_timestep = torch.min(
|
| 1388 |
+
current_timestep, 1.0 - conditioning_mask
|
| 1389 |
+
)
|
| 1390 |
+
|
| 1391 |
+
# Choose the appropriate context manager based on `mixed_precision`
|
| 1392 |
+
if mixed_precision:
|
| 1393 |
+
context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
|
| 1394 |
+
else:
|
| 1395 |
+
context_manager = nullcontext() # Dummy context manager
|
| 1396 |
+
|
| 1397 |
+
# predict noise model_output
|
| 1398 |
+
with context_manager:
|
| 1399 |
+
noise_pred = self.transformer(
|
| 1400 |
+
latent_model_input.to(self.transformer.dtype),
|
| 1401 |
+
indices_grid=fractional_coords,
|
| 1402 |
+
encoder_hidden_states=prompt_embeds_batch[indices].to(
|
| 1403 |
+
self.transformer.dtype
|
| 1404 |
+
),
|
| 1405 |
+
encoder_attention_mask=prompt_attention_mask_batch[indices],
|
| 1406 |
+
timestep=current_timestep,
|
| 1407 |
+
skip_layer_mask=skip_layer_mask,
|
| 1408 |
+
skip_layer_strategy=skip_layer_strategy,
|
| 1409 |
+
return_dict=False,
|
| 1410 |
+
)[0]
|
| 1411 |
+
|
| 1412 |
+
# perform guidance
|
| 1413 |
+
if do_spatio_temporal_guidance:
|
| 1414 |
+
noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
|
| 1415 |
+
num_conds
|
| 1416 |
+
)[-2:]
|
| 1417 |
+
if do_classifier_free_guidance:
|
| 1418 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
|
| 1419 |
+
|
| 1420 |
+
if cfg_star_rescale:
|
| 1421 |
+
# Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
|
| 1422 |
+
# α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
|
| 1423 |
+
# where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
|
| 1424 |
+
positive_flat = noise_pred_text.view(batch_size, -1)
|
| 1425 |
+
negative_flat = noise_pred_uncond.view(batch_size, -1)
|
| 1426 |
+
dot_product = torch.sum(
|
| 1427 |
+
positive_flat * negative_flat, dim=1, keepdim=True
|
| 1428 |
+
)
|
| 1429 |
+
squared_norm = (
|
| 1430 |
+
torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
|
| 1431 |
+
)
|
| 1432 |
+
alpha = dot_product / squared_norm
|
| 1433 |
+
noise_pred_uncond = alpha * noise_pred_uncond
|
| 1434 |
+
|
| 1435 |
+
noise_pred = noise_pred_uncond + guidance_scale[i] * (
|
| 1436 |
+
noise_pred_text - noise_pred_uncond
|
| 1437 |
+
)
|
| 1438 |
+
elif do_spatio_temporal_guidance:
|
| 1439 |
+
noise_pred = noise_pred_text
|
| 1440 |
+
if do_spatio_temporal_guidance:
|
| 1441 |
+
noise_pred = noise_pred + stg_scale[i] * (
|
| 1442 |
+
noise_pred_text - noise_pred_text_perturb
|
| 1443 |
+
)
|
| 1444 |
+
if do_rescaling and stg_scale[i] > 0.0:
|
| 1445 |
+
noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
|
| 1446 |
+
dim=1, keepdim=True
|
| 1447 |
+
)
|
| 1448 |
+
noise_pred_std = noise_pred.view(batch_size, -1).std(
|
| 1449 |
+
dim=1, keepdim=True
|
| 1450 |
+
)
|
| 1451 |
+
|
| 1452 |
+
factor = noise_pred_text_std / noise_pred_std
|
| 1453 |
+
factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
|
| 1454 |
+
|
| 1455 |
+
noise_pred = noise_pred * factor.view(batch_size, 1, 1)
|
| 1456 |
+
|
| 1457 |
+
current_timestep = current_timestep[:1]
|
| 1458 |
+
# learned sigma
|
| 1459 |
+
if (
|
| 1460 |
+
self.transformer.config.out_channels // 2
|
| 1461 |
+
== self.transformer.config.in_channels
|
| 1462 |
+
):
|
| 1463 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
| 1464 |
+
|
| 1465 |
+
# compute previous image: x_t -> x_t-1
|
| 1466 |
+
latents = self.denoising_step(
|
| 1467 |
+
latents,
|
| 1468 |
+
noise_pred,
|
| 1469 |
+
current_timestep,
|
| 1470 |
+
orig_conditioning_mask,
|
| 1471 |
+
t,
|
| 1472 |
+
extra_step_kwargs,
|
| 1473 |
+
stochastic_sampling=stochastic_sampling,
|
| 1474 |
+
)
|
| 1475 |
+
|
| 1476 |
+
try:
|
| 1477 |
+
print(f"[LTX8]LATENTS {latents.shape}")
|
| 1478 |
+
self.spy.inspect(latents, "LTX8_After_Patchify", reference_shape_5d=original_shape)
|
| 1479 |
+
except Exception:
|
| 1480 |
+
pass
|
| 1481 |
+
|
| 1482 |
+
# call the callback, if provided
|
| 1483 |
+
if i == len(timesteps) - 1 or (
|
| 1484 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 1485 |
+
):
|
| 1486 |
+
progress_bar.update()
|
| 1487 |
+
|
| 1488 |
+
if callback_on_step_end is not None:
|
| 1489 |
+
callback_on_step_end(self, i, t, {})
|
| 1490 |
+
|
| 1491 |
+
|
| 1492 |
+
|
| 1493 |
+
try:
|
| 1494 |
+
print(f"[LTX9]LATENTS {latents.shape}")
|
| 1495 |
+
self.spy.inspect(latents, "LTX9_After_Patchify", reference_shape_5d=original_shape)
|
| 1496 |
+
|
| 1497 |
+
except Exception:
|
| 1498 |
+
pass
|
| 1499 |
+
|
| 1500 |
+
|
| 1501 |
+
if offload_to_cpu:
|
| 1502 |
+
self.transformer = self.transformer.cpu()
|
| 1503 |
+
if self._execution_device == "cuda":
|
| 1504 |
+
torch.cuda.empty_cache()
|
| 1505 |
+
|
| 1506 |
+
# Remove the added conditioning latents
|
| 1507 |
+
latents = latents[:, num_cond_latents:]
|
| 1508 |
+
|
| 1509 |
+
|
| 1510 |
+
try:
|
| 1511 |
+
print(f"[LTX10]LATENTS {latents.shape}")
|
| 1512 |
+
self.spy.inspect(latents, "LTX10_After_Patchify", reference_shape_5d=original_shape)
|
| 1513 |
+
except Exception:
|
| 1514 |
+
pass
|
| 1515 |
+
|
| 1516 |
+
latents = self.patchifier.unpatchify(
|
| 1517 |
+
latents=latents,
|
| 1518 |
+
output_height=latent_height,
|
| 1519 |
+
output_width=latent_width,
|
| 1520 |
+
out_channels=self.transformer.in_channels
|
| 1521 |
+
// math.prod(self.patchifier.patch_size),
|
| 1522 |
+
)
|
| 1523 |
+
if output_type != "latent":
|
| 1524 |
+
if self.vae.decoder.timestep_conditioning:
|
| 1525 |
+
noise = torch.randn_like(latents)
|
| 1526 |
+
if not isinstance(decode_timestep, list):
|
| 1527 |
+
decode_timestep = [decode_timestep] * latents.shape[0]
|
| 1528 |
+
if decode_noise_scale is None:
|
| 1529 |
+
decode_noise_scale = decode_timestep
|
| 1530 |
+
elif not isinstance(decode_noise_scale, list):
|
| 1531 |
+
decode_noise_scale = [decode_noise_scale] * latents.shape[0]
|
| 1532 |
+
|
| 1533 |
+
decode_timestep = torch.tensor(decode_timestep).to(latents.device)
|
| 1534 |
+
decode_noise_scale = torch.tensor(decode_noise_scale).to(
|
| 1535 |
+
latents.device
|
| 1536 |
+
)[:, None, None, None, None]
|
| 1537 |
+
latents = (
|
| 1538 |
+
latents * (1 - decode_noise_scale) + noise * decode_noise_scale
|
| 1539 |
+
)
|
| 1540 |
+
else:
|
| 1541 |
+
decode_timestep = None
|
| 1542 |
+
latents = self.tone_map_latents(latents, tone_map_compression_ratio)
|
| 1543 |
+
image = vae_decode(
|
| 1544 |
+
latents,
|
| 1545 |
+
self.vae,
|
| 1546 |
+
is_video,
|
| 1547 |
+
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
|
| 1548 |
+
timestep=decode_timestep,
|
| 1549 |
+
)
|
| 1550 |
+
|
| 1551 |
+
try:
|
| 1552 |
+
print(f"[LTX11]LATENTS {latents.shape}")
|
| 1553 |
+
except Exception:
|
| 1554 |
+
pass
|
| 1555 |
+
|
| 1556 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1557 |
+
|
| 1558 |
+
else:
|
| 1559 |
+
image = latents
|
| 1560 |
+
|
| 1561 |
+
# Offload all models
|
| 1562 |
+
self.maybe_free_model_hooks()
|
| 1563 |
+
|
| 1564 |
+
if not return_dict:
|
| 1565 |
+
return (image,)
|
| 1566 |
+
|
| 1567 |
+
return ImagePipelineOutput(images=image)
|
| 1568 |
+
|
| 1569 |
+
def denoising_step(
|
| 1570 |
+
self,
|
| 1571 |
+
latents: torch.Tensor,
|
| 1572 |
+
noise_pred: torch.Tensor,
|
| 1573 |
+
current_timestep: torch.Tensor,
|
| 1574 |
+
conditioning_mask: torch.Tensor,
|
| 1575 |
+
t: float,
|
| 1576 |
+
extra_step_kwargs,
|
| 1577 |
+
t_eps=1e-6,
|
| 1578 |
+
stochastic_sampling=False,
|
| 1579 |
+
):
|
| 1580 |
+
"""
|
| 1581 |
+
Perform the denoising step for the required tokens, based on the current timestep and
|
| 1582 |
+
conditioning mask:
|
| 1583 |
+
Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
|
| 1584 |
+
and will start to be denoised when the current timestep is equal or lower than their
|
| 1585 |
+
conditioning timestep.
|
| 1586 |
+
(hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
|
| 1587 |
+
"""
|
| 1588 |
+
# Denoise the latents using the scheduler
|
| 1589 |
+
denoised_latents = self.scheduler.step(
|
| 1590 |
+
noise_pred,
|
| 1591 |
+
t if current_timestep is None else current_timestep,
|
| 1592 |
+
latents,
|
| 1593 |
+
**extra_step_kwargs,
|
| 1594 |
+
return_dict=False,
|
| 1595 |
+
stochastic_sampling=stochastic_sampling,
|
| 1596 |
+
)[0]
|
| 1597 |
+
|
| 1598 |
+
if conditioning_mask is None:
|
| 1599 |
+
return denoised_latents
|
| 1600 |
+
|
| 1601 |
+
tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
|
| 1602 |
+
return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
|
| 1603 |
+
|
| 1604 |
+
def prepare_conditioning(
|
| 1605 |
+
self,
|
| 1606 |
+
conditioning_items: Optional[List[ConditioningItem]],
|
| 1607 |
+
init_latents: torch.Tensor,
|
| 1608 |
+
num_frames: int,
|
| 1609 |
+
height: int,
|
| 1610 |
+
width: int,
|
| 1611 |
+
vae_per_channel_normalize: bool = False,
|
| 1612 |
+
generator=None,
|
| 1613 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 1614 |
+
"""
|
| 1615 |
+
Prepare conditioning tokens based on the provided conditioning items.
|
| 1616 |
+
|
| 1617 |
+
This method encodes provided conditioning items (video frames or single frames) into latents
|
| 1618 |
+
and integrates them with the initial latent tensor. It also calculates corresponding pixel
|
| 1619 |
+
coordinates, a mask indicating the influence of conditioning latents, and the total number of
|
| 1620 |
+
conditioning latents.
|
| 1621 |
+
|
| 1622 |
+
Args:
|
| 1623 |
+
conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
|
| 1624 |
+
init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
|
| 1625 |
+
`f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
|
| 1626 |
+
num_frames, height, width: The dimensions of the generated video.
|
| 1627 |
+
vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
|
| 1628 |
+
Defaults to `False`.
|
| 1629 |
+
generator: The random generator
|
| 1630 |
+
|
| 1631 |
+
Returns:
|
| 1632 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 1633 |
+
- `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
|
| 1634 |
+
patchified into (b, n, c) shape.
|
| 1635 |
+
- `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
|
| 1636 |
+
latent tensor.
|
| 1637 |
+
- `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
|
| 1638 |
+
latent token.
|
| 1639 |
+
- `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
|
| 1640 |
+
|
| 1641 |
+
Raises:
|
| 1642 |
+
AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
|
| 1643 |
+
"""
|
| 1644 |
+
assert isinstance(self.vae, CausalVideoAutoencoder)
|
| 1645 |
+
|
| 1646 |
+
if conditioning_items:
|
| 1647 |
+
batch_size, _, num_latent_frames = init_latents.shape[:3]
|
| 1648 |
+
|
| 1649 |
+
init_conditioning_mask = torch.zeros(
|
| 1650 |
+
init_latents[:, 0, :, :, :].shape,
|
| 1651 |
+
dtype=torch.float32,
|
| 1652 |
+
device=init_latents.device,
|
| 1653 |
+
)
|
| 1654 |
+
|
| 1655 |
+
extra_conditioning_latents = []
|
| 1656 |
+
extra_conditioning_pixel_coords = []
|
| 1657 |
+
extra_conditioning_mask = []
|
| 1658 |
+
extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
|
| 1659 |
+
|
| 1660 |
+
# Process each conditioning item
|
| 1661 |
+
for conditioning_item in conditioning_items:
|
| 1662 |
+
conditioning_item = self._resize_conditioning_item(
|
| 1663 |
+
conditioning_item, height, width
|
| 1664 |
+
)
|
| 1665 |
+
media_item = conditioning_item.media_item
|
| 1666 |
+
media_frame_number = conditioning_item.media_frame_number
|
| 1667 |
+
strength = conditioning_item.conditioning_strength
|
| 1668 |
+
assert media_item.ndim == 5 # (b, c, f, h, w)
|
| 1669 |
+
b, c, n_frames, h, w = media_item.shape
|
| 1670 |
+
assert (
|
| 1671 |
+
height == h and width == w
|
| 1672 |
+
) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
|
| 1673 |
+
assert n_frames % 8 == 1
|
| 1674 |
+
assert (
|
| 1675 |
+
media_frame_number >= 0
|
| 1676 |
+
and media_frame_number + n_frames <= num_frames
|
| 1677 |
+
)
|
| 1678 |
+
|
| 1679 |
+
# Encode the provided conditioning media item
|
| 1680 |
+
media_item_latents = vae_encode(
|
| 1681 |
+
media_item.to(dtype=self.vae.dtype, device=self.vae.device),
|
| 1682 |
+
self.vae,
|
| 1683 |
+
vae_per_channel_normalize=vae_per_channel_normalize,
|
| 1684 |
+
).to(dtype=init_latents.dtype)
|
| 1685 |
+
|
| 1686 |
+
# Handle the different conditioning cases
|
| 1687 |
+
if media_frame_number == 0:
|
| 1688 |
+
# Get the target spatial position of the latent conditioning item
|
| 1689 |
+
media_item_latents, l_x, l_y = self._get_latent_spatial_position(
|
| 1690 |
+
media_item_latents,
|
| 1691 |
+
conditioning_item,
|
| 1692 |
+
height,
|
| 1693 |
+
width,
|
| 1694 |
+
strip_latent_border=True,
|
| 1695 |
+
)
|
| 1696 |
+
b, c_l, f_l, h_l, w_l = media_item_latents.shape
|
| 1697 |
+
|
| 1698 |
+
# First frame or sequence - just update the initial noise latents and the mask
|
| 1699 |
+
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
|
| 1700 |
+
torch.lerp(
|
| 1701 |
+
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
|
| 1702 |
+
media_item_latents,
|
| 1703 |
+
strength,
|
| 1704 |
+
)
|
| 1705 |
+
)
|
| 1706 |
+
init_conditioning_mask[
|
| 1707 |
+
:, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
|
| 1708 |
+
] = strength
|
| 1709 |
+
else:
|
| 1710 |
+
# Non-first frame or sequence
|
| 1711 |
+
if n_frames > 1:
|
| 1712 |
+
# Handle non-first sequence.
|
| 1713 |
+
# Encoded latents are either fully consumed, or the prefix is handled separately below.
|
| 1714 |
+
(
|
| 1715 |
+
init_latents,
|
| 1716 |
+
init_conditioning_mask,
|
| 1717 |
+
media_item_latents,
|
| 1718 |
+
) = self._handle_non_first_conditioning_sequence(
|
| 1719 |
+
init_latents,
|
| 1720 |
+
init_conditioning_mask,
|
| 1721 |
+
media_item_latents,
|
| 1722 |
+
media_frame_number,
|
| 1723 |
+
strength,
|
| 1724 |
+
)
|
| 1725 |
+
|
| 1726 |
+
# Single frame or sequence-prefix latents
|
| 1727 |
+
if media_item_latents is not None:
|
| 1728 |
+
noise = randn_tensor(
|
| 1729 |
+
media_item_latents.shape,
|
| 1730 |
+
generator=generator,
|
| 1731 |
+
device=media_item_latents.device,
|
| 1732 |
+
dtype=media_item_latents.dtype,
|
| 1733 |
+
)
|
| 1734 |
+
|
| 1735 |
+
media_item_latents = torch.lerp(
|
| 1736 |
+
noise, media_item_latents, strength
|
| 1737 |
+
)
|
| 1738 |
+
|
| 1739 |
+
# Patchify the extra conditioning latents and calculate their pixel coordinates
|
| 1740 |
+
media_item_latents, latent_coords = self.patchifier.patchify(
|
| 1741 |
+
latents=media_item_latents
|
| 1742 |
+
)
|
| 1743 |
+
pixel_coords = latent_to_pixel_coords(
|
| 1744 |
+
latent_coords,
|
| 1745 |
+
self.vae,
|
| 1746 |
+
causal_fix=self.transformer.config.causal_temporal_positioning,
|
| 1747 |
+
)
|
| 1748 |
+
|
| 1749 |
+
# Update the frame numbers to match the target frame number
|
| 1750 |
+
pixel_coords[:, 0] += media_frame_number
|
| 1751 |
+
extra_conditioning_num_latents += media_item_latents.shape[1]
|
| 1752 |
+
|
| 1753 |
+
conditioning_mask = torch.full(
|
| 1754 |
+
media_item_latents.shape[:2],
|
| 1755 |
+
strength,
|
| 1756 |
+
dtype=torch.float32,
|
| 1757 |
+
device=init_latents.device,
|
| 1758 |
+
)
|
| 1759 |
+
|
| 1760 |
+
extra_conditioning_latents.append(media_item_latents)
|
| 1761 |
+
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 1762 |
+
extra_conditioning_mask.append(conditioning_mask)
|
| 1763 |
+
|
| 1764 |
+
# Patchify the updated latents and calculate their pixel coordinates
|
| 1765 |
+
init_latents, init_latent_coords = self.patchifier.patchify(
|
| 1766 |
+
latents=init_latents
|
| 1767 |
+
)
|
| 1768 |
+
init_pixel_coords = latent_to_pixel_coords(
|
| 1769 |
+
init_latent_coords,
|
| 1770 |
+
self.vae,
|
| 1771 |
+
causal_fix=self.transformer.config.causal_temporal_positioning,
|
| 1772 |
+
)
|
| 1773 |
+
|
| 1774 |
+
if not conditioning_items:
|
| 1775 |
+
return init_latents, init_pixel_coords, None, 0
|
| 1776 |
+
|
| 1777 |
+
init_conditioning_mask, _ = self.patchifier.patchify(
|
| 1778 |
+
latents=init_conditioning_mask.unsqueeze(1)
|
| 1779 |
+
)
|
| 1780 |
+
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 1781 |
+
|
| 1782 |
+
if extra_conditioning_latents:
|
| 1783 |
+
# Stack the extra conditioning latents, pixel coordinates and mask
|
| 1784 |
+
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 1785 |
+
init_pixel_coords = torch.cat(
|
| 1786 |
+
[*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
|
| 1787 |
+
)
|
| 1788 |
+
init_conditioning_mask = torch.cat(
|
| 1789 |
+
[*extra_conditioning_mask, init_conditioning_mask], dim=1
|
| 1790 |
+
)
|
| 1791 |
+
|
| 1792 |
+
if self.transformer.use_tpu_flash_attention:
|
| 1793 |
+
# When flash attention is used, keep the original number of tokens by removing
|
| 1794 |
+
# tokens from the end.
|
| 1795 |
+
init_latents = init_latents[:, :-extra_conditioning_num_latents]
|
| 1796 |
+
init_pixel_coords = init_pixel_coords[
|
| 1797 |
+
:, :, :-extra_conditioning_num_latents
|
| 1798 |
+
]
|
| 1799 |
+
init_conditioning_mask = init_conditioning_mask[
|
| 1800 |
+
:, :-extra_conditioning_num_latents
|
| 1801 |
+
]
|
| 1802 |
+
|
| 1803 |
+
return (
|
| 1804 |
+
init_latents,
|
| 1805 |
+
init_pixel_coords,
|
| 1806 |
+
init_conditioning_mask,
|
| 1807 |
+
extra_conditioning_num_latents,
|
| 1808 |
+
)
|
| 1809 |
+
|
| 1810 |
+
@staticmethod
|
| 1811 |
+
def _resize_conditioning_item(
|
| 1812 |
+
conditioning_item: ConditioningItem,
|
| 1813 |
+
height: int,
|
| 1814 |
+
width: int,
|
| 1815 |
+
):
|
| 1816 |
+
if conditioning_item.media_x or conditioning_item.media_y:
|
| 1817 |
+
raise ValueError(
|
| 1818 |
+
"Provide media_item in the target size for spatial conditioning."
|
| 1819 |
+
)
|
| 1820 |
+
new_conditioning_item = copy.copy(conditioning_item)
|
| 1821 |
+
new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
|
| 1822 |
+
conditioning_item.media_item, height, width
|
| 1823 |
+
)
|
| 1824 |
+
return new_conditioning_item
|
| 1825 |
+
|
| 1826 |
+
def _get_latent_spatial_position(
|
| 1827 |
+
self,
|
| 1828 |
+
latents: torch.Tensor,
|
| 1829 |
+
conditioning_item: ConditioningItem,
|
| 1830 |
+
height: int,
|
| 1831 |
+
width: int,
|
| 1832 |
+
strip_latent_border,
|
| 1833 |
+
):
|
| 1834 |
+
"""
|
| 1835 |
+
Get the spatial position of the conditioning item in the latent space.
|
| 1836 |
+
If requested, strip the conditioning latent borders that do not align with target borders.
|
| 1837 |
+
(border latents look different then other latents and might confuse the model)
|
| 1838 |
+
"""
|
| 1839 |
+
scale = self.vae_scale_factor
|
| 1840 |
+
h, w = conditioning_item.media_item.shape[-2:]
|
| 1841 |
+
assert (
|
| 1842 |
+
h <= height and w <= width
|
| 1843 |
+
), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
|
| 1844 |
+
assert h % scale == 0 and w % scale == 0
|
| 1845 |
+
|
| 1846 |
+
# Compute the start and end spatial positions of the media item
|
| 1847 |
+
x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
|
| 1848 |
+
x_start = (width - w) // 2 if x_start is None else x_start
|
| 1849 |
+
y_start = (height - h) // 2 if y_start is None else y_start
|
| 1850 |
+
x_end, y_end = x_start + w, y_start + h
|
| 1851 |
+
assert (
|
| 1852 |
+
x_end <= width and y_end <= height
|
| 1853 |
+
), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
|
| 1854 |
+
|
| 1855 |
+
if strip_latent_border:
|
| 1856 |
+
# Strip one latent from left/right and/or top/bottom, update x, y accordingly
|
| 1857 |
+
if x_start > 0:
|
| 1858 |
+
x_start += scale
|
| 1859 |
+
latents = latents[:, :, :, :, 1:]
|
| 1860 |
+
|
| 1861 |
+
if y_start > 0:
|
| 1862 |
+
y_start += scale
|
| 1863 |
+
latents = latents[:, :, :, 1:, :]
|
| 1864 |
+
|
| 1865 |
+
if x_end < width:
|
| 1866 |
+
latents = latents[:, :, :, :, :-1]
|
| 1867 |
+
|
| 1868 |
+
if y_end < height:
|
| 1869 |
+
latents = latents[:, :, :, :-1, :]
|
| 1870 |
+
|
| 1871 |
+
return latents, x_start // scale, y_start // scale
|
| 1872 |
+
|
| 1873 |
+
@staticmethod
|
| 1874 |
+
def _handle_non_first_conditioning_sequence(
|
| 1875 |
+
init_latents: torch.Tensor,
|
| 1876 |
+
init_conditioning_mask: torch.Tensor,
|
| 1877 |
+
latents: torch.Tensor,
|
| 1878 |
+
media_frame_number: int,
|
| 1879 |
+
strength: float,
|
| 1880 |
+
num_prefix_latent_frames: int = 2,
|
| 1881 |
+
prefix_latents_mode: str = "concat",
|
| 1882 |
+
prefix_soft_conditioning_strength: float = 0.15,
|
| 1883 |
+
):
|
| 1884 |
+
"""
|
| 1885 |
+
Special handling for a conditioning sequence that does not start on the first frame.
|
| 1886 |
+
The special handling is required to allow a short encoded video to be used as middle
|
| 1887 |
+
(or last) sequence in a longer video.
|
| 1888 |
+
Args:
|
| 1889 |
+
init_latents (torch.Tensor): The initial noise latents to be updated.
|
| 1890 |
+
init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
|
| 1891 |
+
latents (torch.Tensor): The encoded conditioning item.
|
| 1892 |
+
media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
|
| 1893 |
+
strength (float): The conditioning strength for the conditioning latents.
|
| 1894 |
+
num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
|
| 1895 |
+
separately. Defaults to 2.
|
| 1896 |
+
prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
|
| 1897 |
+
- "drop": Drop the prefix latents.
|
| 1898 |
+
- "soft": Use the prefix latents, but with soft-conditioning
|
| 1899 |
+
- "concat": Add the prefix latents as extra tokens (like single frames)
|
| 1900 |
+
prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
|
| 1901 |
+
the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
|
| 1902 |
+
|
| 1903 |
+
"""
|
| 1904 |
+
f_l = latents.shape[2]
|
| 1905 |
+
f_l_p = num_prefix_latent_frames
|
| 1906 |
+
assert f_l >= f_l_p
|
| 1907 |
+
assert media_frame_number % 8 == 0
|
| 1908 |
+
if f_l > f_l_p:
|
| 1909 |
+
# Insert the conditioning latents **excluding the prefix** into the sequence
|
| 1910 |
+
f_l_start = media_frame_number // 8 + f_l_p
|
| 1911 |
+
f_l_end = f_l_start + f_l - f_l_p
|
| 1912 |
+
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
|
| 1913 |
+
init_latents[:, :, f_l_start:f_l_end],
|
| 1914 |
+
latents[:, :, f_l_p:],
|
| 1915 |
+
strength,
|
| 1916 |
+
)
|
| 1917 |
+
# Mark these latent frames as conditioning latents
|
| 1918 |
+
init_conditioning_mask[:, f_l_start:f_l_end] = strength
|
| 1919 |
+
|
| 1920 |
+
# Handle the prefix-latents
|
| 1921 |
+
if prefix_latents_mode == "soft":
|
| 1922 |
+
if f_l_p > 1:
|
| 1923 |
+
# Drop the first (single-frame) latent and soft-condition the remaining prefix
|
| 1924 |
+
f_l_start = media_frame_number // 8 + 1
|
| 1925 |
+
f_l_end = f_l_start + f_l_p - 1
|
| 1926 |
+
strength = min(prefix_soft_conditioning_strength, strength)
|
| 1927 |
+
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
|
| 1928 |
+
init_latents[:, :, f_l_start:f_l_end],
|
| 1929 |
+
latents[:, :, 1:f_l_p],
|
| 1930 |
+
strength,
|
| 1931 |
+
)
|
| 1932 |
+
# Mark these latent frames as conditioning latents
|
| 1933 |
+
init_conditioning_mask[:, f_l_start:f_l_end] = strength
|
| 1934 |
+
latents = None # No more latents to handle
|
| 1935 |
+
elif prefix_latents_mode == "drop":
|
| 1936 |
+
# Drop the prefix latents
|
| 1937 |
+
latents = None
|
| 1938 |
+
elif prefix_latents_mode == "concat":
|
| 1939 |
+
# Pass-on the prefix latents to be handled as extra conditioning frames
|
| 1940 |
+
latents = latents[:, :, :f_l_p]
|
| 1941 |
+
else:
|
| 1942 |
+
raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
|
| 1943 |
+
return (
|
| 1944 |
+
init_latents,
|
| 1945 |
+
init_conditioning_mask,
|
| 1946 |
+
latents,
|
| 1947 |
+
)
|
| 1948 |
+
|
| 1949 |
+
def trim_conditioning_sequence(
|
| 1950 |
+
self, start_frame: int, sequence_num_frames: int, target_num_frames: int
|
| 1951 |
+
):
|
| 1952 |
+
"""
|
| 1953 |
+
Trim a conditioning sequence to the allowed number of frames.
|
| 1954 |
+
|
| 1955 |
+
Args:
|
| 1956 |
+
start_frame (int): The target frame number of the first frame in the sequence.
|
| 1957 |
+
sequence_num_frames (int): The number of frames in the sequence.
|
| 1958 |
+
target_num_frames (int): The target number of frames in the generated video.
|
| 1959 |
+
|
| 1960 |
+
Returns:
|
| 1961 |
+
int: updated sequence length
|
| 1962 |
+
"""
|
| 1963 |
+
scale_factor = self.video_scale_factor
|
| 1964 |
+
num_frames = min(sequence_num_frames, target_num_frames - start_frame)
|
| 1965 |
+
# Trim down to a multiple of temporal_scale_factor frames plus 1
|
| 1966 |
+
num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
|
| 1967 |
+
return num_frames
|
| 1968 |
+
|
| 1969 |
+
@staticmethod
|
| 1970 |
+
def tone_map_latents(
|
| 1971 |
+
latents: torch.Tensor,
|
| 1972 |
+
compression: float,
|
| 1973 |
+
) -> torch.Tensor:
|
| 1974 |
+
"""
|
| 1975 |
+
Applies a non-linear tone-mapping function to latent values to reduce their dynamic range
|
| 1976 |
+
in a perceptually smooth way using a sigmoid-based compression.
|
| 1977 |
+
|
| 1978 |
+
This is useful for regularizing high-variance latents or for conditioning outputs
|
| 1979 |
+
during generation, especially when controlling dynamic behavior with a `compression` factor.
|
| 1980 |
+
|
| 1981 |
+
Parameters:
|
| 1982 |
+
----------
|
| 1983 |
+
latents : torch.Tensor
|
| 1984 |
+
Input latent tensor with arbitrary shape. Expected to be roughly in [-1, 1] or [0, 1] range.
|
| 1985 |
+
compression : float
|
| 1986 |
+
Compression strength in the range [0, 1].
|
| 1987 |
+
- 0.0: No tone-mapping (identity transform)
|
| 1988 |
+
- 1.0: Full compression effect
|
| 1989 |
+
|
| 1990 |
+
Returns:
|
| 1991 |
+
-------
|
| 1992 |
+
torch.Tensor
|
| 1993 |
+
The tone-mapped latent tensor of the same shape as input.
|
| 1994 |
+
"""
|
| 1995 |
+
if not (0 <= compression <= 1):
|
| 1996 |
+
raise ValueError("Compression must be in the range [0, 1]")
|
| 1997 |
+
|
| 1998 |
+
# Remap [0-1] to [0-0.75] and apply sigmoid compression in one shot
|
| 1999 |
+
scale_factor = compression * 0.75
|
| 2000 |
+
abs_latents = torch.abs(latents)
|
| 2001 |
+
|
| 2002 |
+
# Sigmoid compression: sigmoid shifts large values toward 0.2, small values stay ~1.0
|
| 2003 |
+
# When scale_factor=0, sigmoid term vanishes, when scale_factor=0.75, full effect
|
| 2004 |
+
sigmoid_term = torch.sigmoid(4.0 * scale_factor * (abs_latents - 1.0))
|
| 2005 |
+
scales = 1.0 - 0.8 * scale_factor * sigmoid_term
|
| 2006 |
+
|
| 2007 |
+
filtered = latents * scales
|
| 2008 |
+
return filtered
|
| 2009 |
+
|
| 2010 |
+
|
| 2011 |
+
def adain_filter_latent(
|
| 2012 |
+
latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
|
| 2013 |
+
):
|
| 2014 |
+
"""
|
| 2015 |
+
Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
|
| 2016 |
+
statistics from a reference latent tensor.
|
| 2017 |
+
|
| 2018 |
+
Args:
|
| 2019 |
+
latent (torch.Tensor): Input latents to normalize
|
| 2020 |
+
reference_latent (torch.Tensor): The reference latents providing style statistics.
|
| 2021 |
+
factor (float): Blending factor between original and transformed latent.
|
| 2022 |
+
Range: -10.0 to 10.0, Default: 1.0
|
| 2023 |
+
|
| 2024 |
+
Returns:
|
| 2025 |
+
torch.Tensor: The transformed latent tensor
|
| 2026 |
+
"""
|
| 2027 |
+
result = latents.clone()
|
| 2028 |
+
|
| 2029 |
+
for i in range(latents.size(0)):
|
| 2030 |
+
for c in range(latents.size(1)):
|
| 2031 |
+
r_sd, r_mean = torch.std_mean(
|
| 2032 |
+
reference_latents[i, c], dim=None
|
| 2033 |
+
) # index by original dim order
|
| 2034 |
+
i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
|
| 2035 |
+
|
| 2036 |
+
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
|
| 2037 |
+
|
| 2038 |
+
result = torch.lerp(latents, result, factor)
|
| 2039 |
+
return result
|
| 2040 |
+
|
| 2041 |
+
|
| 2042 |
+
class LTXMultiScalePipeline:
|
| 2043 |
+
def _upsample_latents(
|
| 2044 |
+
self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
|
| 2045 |
+
):
|
| 2046 |
+
assert latents.device == latest_upsampler.device
|
| 2047 |
+
|
| 2048 |
+
latents = un_normalize_latents(
|
| 2049 |
+
latents, self.vae, vae_per_channel_normalize=True
|
| 2050 |
+
)
|
| 2051 |
+
upsampled_latents = latest_upsampler(latents)
|
| 2052 |
+
upsampled_latents = normalize_latents(
|
| 2053 |
+
upsampled_latents, self.vae, vae_per_channel_normalize=True
|
| 2054 |
+
)
|
| 2055 |
+
return upsampled_latents
|
| 2056 |
+
|
| 2057 |
+
def __init__(
|
| 2058 |
+
self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
|
| 2059 |
+
):
|
| 2060 |
+
self.video_pipeline = video_pipeline
|
| 2061 |
+
self.vae = video_pipeline.vae
|
| 2062 |
+
self.latent_upsampler = latent_upsampler
|
| 2063 |
+
|
| 2064 |
+
def __call__(
|
| 2065 |
+
self,
|
| 2066 |
+
downscale_factor: float,
|
| 2067 |
+
first_pass: dict,
|
| 2068 |
+
second_pass: dict,
|
| 2069 |
+
*args: Any,
|
| 2070 |
+
**kwargs: Any,
|
| 2071 |
+
) -> Any:
|
| 2072 |
+
original_kwargs = kwargs.copy()
|
| 2073 |
+
original_output_type = kwargs["output_type"]
|
| 2074 |
+
original_width = kwargs["width"]
|
| 2075 |
+
original_height = kwargs["height"]
|
| 2076 |
+
|
| 2077 |
+
x_width = int(kwargs["width"] * downscale_factor)
|
| 2078 |
+
downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
|
| 2079 |
+
x_height = int(kwargs["height"] * downscale_factor)
|
| 2080 |
+
downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
|
| 2081 |
+
|
| 2082 |
+
kwargs["output_type"] = "latent"
|
| 2083 |
+
kwargs["width"] = downscaled_width
|
| 2084 |
+
kwargs["height"] = downscaled_height
|
| 2085 |
+
kwargs.update(**first_pass)
|
| 2086 |
+
result = self.video_pipeline(*args, **kwargs)
|
| 2087 |
+
latents = result.images
|
| 2088 |
+
|
| 2089 |
+
upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
|
| 2090 |
+
upsampled_latents = adain_filter_latent(
|
| 2091 |
+
latents=upsampled_latents, reference_latents=latents
|
| 2092 |
+
)
|
| 2093 |
+
|
| 2094 |
+
kwargs = original_kwargs
|
| 2095 |
+
|
| 2096 |
+
kwargs["latents"] = upsampled_latents
|
| 2097 |
+
kwargs["output_type"] = original_output_type
|
| 2098 |
+
kwargs["width"] = downscaled_width * 2
|
| 2099 |
+
kwargs["height"] = downscaled_height * 2
|
| 2100 |
+
kwargs.update(**second_pass)
|
| 2101 |
+
|
| 2102 |
+
result = self.video_pipeline(*args, **kwargs)
|
| 2103 |
+
if original_output_type != "latent":
|
| 2104 |
+
num_frames = result.images.shape[2]
|
| 2105 |
+
videos = rearrange(result.images, "b c f h w -> (b f) c h w")
|
| 2106 |
+
|
| 2107 |
+
videos = F.interpolate(
|
| 2108 |
+
videos,
|
| 2109 |
+
size=(original_height, original_width),
|
| 2110 |
+
mode="bilinear",
|
| 2111 |
+
align_corners=False,
|
| 2112 |
+
)
|
| 2113 |
+
videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
|
| 2114 |
+
result.images = videos
|
| 2115 |
+
|
| 2116 |
+
return result
|