Test / app.py
eeuuia's picture
Update app.py
b743563 verified
raw
history blame
12.1 kB
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import yaml
import json
from pathlib import Path
import random
# Importações de Hugging Face
from huggingface_hub import snapshot_download, HfFolder
from transformers import T5EncoderModel, T5TokenizerFast
from diffusers import LTXLatentUpsamplePipeline
from diffusers.models import AutoencoderKLLTXVideo, LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
# Nossa pipeline customizada e utilitários
from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
import imageio
# --- Configuração de Logging e Avisos ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning) # Correto: UserWarning é uma classe
warnings.filterwarnings("ignore", category=FutureWarning) # Correto: FutureWarning é uma classe
warnings.filterwarnings("ignore", message=".*")
# --- CARREGAMENTO DIRETO DOS MODELOS (SEM CLASSE) ---
print("=== [Inicialização da Aplicação] ===")
# 1. Carregar Configuração do Arquivo YAML
CONFIG_PATH = Path("ltxv-13b-0.9.8-distilled.yaml")
if not CONFIG_PATH.exists():
raise FileNotFoundError(f"Arquivo de configuração '{CONFIG_PATH}' não encontrado.")
with open(CONFIG_PATH, "r") as f:
config = yaml.safe_load(f)
print(f"Configuração carregada de: {CONFIG_PATH}")
print(json.dumps(config, indent=2))
# Parâmetros Globais
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16
base_repo="Lightricks/LTX-Video"
checkpoint_path="ltxv-13b-0.9.8-distilled.safetensors"
upscaler_repo="Lightricks/ltxv-spatial-upscaler-0.9.7"
FPS = 24
# 2. Baixar os arquivos do modelo base
print(f"=== Baixando snapshot do repositório base: {base_repo} ===")
local_repo_path = snapshot_download(
repo_id=base_repo,
token=os.getenv("HF_TOKEN") or HfFolder.get_token(),
resume_download=True
)
# 3. Carregar cada componente da pipeline explicitamente
print("=== Carregando componentes da pipeline... ===")
vae = AutoencoderKLLTXVideo.from_pretrained(local_repo_path, subfolder="vae", torch_dtype=torch_dtype)
text_encoder = T5EncoderModel.from_pretrained(local_repo_path, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = T5TokenizerFast.from_pretrained(local_repo_path, subfolder="tokenizer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(local_repo_path, subfolder="scheduler")
# Correção para o erro 'mu': desativar explicitamente o dynamic shifting
if hasattr(scheduler.config, 'use_dynamic_shifting') and scheduler.config.use_dynamic_shifting:
print("[Config] Desativando 'use_dynamic_shifting' no scheduler.")
scheduler.config.use_dynamic_shifting = False
print(f"Carregando pesos do Transformer de: {checkpoint_path}")
transformer = LTXVideoTransformer3DModel.from_pretrained(
local_repo_path, subfolder="transformer", weight_name=checkpoint_path, torch_dtype=torch_dtype
)
# 4. Montar a pipeline principal
print("Montando a LTXConditionPipeline...")
pipeline = LTXConditionPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
scheduler=scheduler, transformer=transformer
)
pipeline.to(device)
pipeline.vae.enable_tiling()
# 5. Carregar a pipeline de upscale
print(f"Carregando o upsampler espacial de: {upscaler_repo}")
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
upscaler_repo, vae=vae, torch_dtype=torch_dtype
)
pipe_upsample.to(device)
print("=== [Inicialização Concluída] Aplicação pronta. ===")
# --- Lógica Principal da Geração de Vídeo ---
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
def prepare_and_generate_video(
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)
):
try:
# Lógica para agrupar as condições *dentro* da função
# Cálculo de frames e resolução
num_frames = int(duration * FPS) + 1
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
# Manipulação da seed
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
# ETAPA 1: Geração do vídeo em baixa resolução
latents = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
**pipeline_args
).frames
# ETAPA 2: Upscale dos latentes
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
# ETAPA 3: Denoise final em alta resolução
final_video_frames_np = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999,
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="np",
**pipeline_args
).frames[0]
# Exportação para arquivo MP4
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
writer.append_data(frame_data)
return output_filename, seed
except Exception as e:
print(f"Ocorreu um erro: {e}")
return None, seed
# --- Interface Gráfica com Gradio ---
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
gr.Markdown("# Geração de Vídeo com LTX\n**Crie vídeos a partir de texto e imagens de condição.**")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", placeholder="Descreva o vídeo que você quer gerar...", lines=3, value="O Coringa dançando em um quarto escuro, iluminação dramática.")
with gr.Accordion("Imagem de Condição 1", open=True):
condition_image_1 = gr.Image(label="Imagem 1", type="pil")
with gr.Row():
condition_strength_1 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)
with gr.Accordion("Imagem de Condição 2", open=False):
condition_image_2 = gr.Image(label="Imagem 2", type="pil")
with gr.Row():
condition_strength_2 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
duration = gr.Slider(label="Duração (s)", minimum=1.0, maximum=10.0, step=0.5, value=2)
with gr.Accordion("Configurações Avançadas", open=False):
negative_prompt = gr.Textbox(label="Prompt Negativo", lines=2, value="pior qualidade, embaçado, tremido, distorcido")
with gr.Row():
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
with gr.Column(scale=1):
output_video = gr.Video(label="Vídeo Gerado", height=400)
generated_seed = gr.Number(label="Seed Utilizada", interactive=False)
generate_btn.click(
fn=prepare_and_generate_video,
inputs=[
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
],
outputs=[output_video, generated_seed]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)