eeshawn11 commited on
Commit
0a5ad3d
·
1 Parent(s): 5dd9a2d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from ultralytics import YOLO
3
+
4
+ def yolov8_inference(
5
+ image: gr.inputs.Image = None,
6
+ model_path = "eeshawn11/naruto_hand_seal_detection",
7
+ conf_threshold: gr.inputs.Slider = 0.25,
8
+ iou_threshold: gr.inputs.Slider = 0.45,
9
+ ):
10
+ """
11
+ YOLOv8 inference function
12
+ Args:
13
+ image: Input image
14
+ model_path: Path to the model
15
+ conf_threshold: Confidence threshold
16
+ iou_threshold: IOU threshold
17
+ Returns:
18
+ Rendered image
19
+ """
20
+ model = YOLO(model_path)
21
+ model.conf = conf_threshold
22
+ model.iou = iou_threshold
23
+ results = model.predict(image, return_outputs=True)
24
+ object_prediction_list = []
25
+ for _, image_results in enumerate(results):
26
+ if len(image_results)!=0:
27
+ image_predictions_in_xyxy_format = image_results['det']
28
+ for pred in image_predictions_in_xyxy_format:
29
+ x1, y1, x2, y2 = (
30
+ int(pred[0]),
31
+ int(pred[1]),
32
+ int(pred[2]),
33
+ int(pred[3]),
34
+ )
35
+ bbox = [x1, y1, x2, y2]
36
+ score = pred[4]
37
+ category_name = model.model.names[int(pred[5])]
38
+ category_id = pred[5]
39
+ object_prediction = ObjectPrediction(
40
+ bbox=bbox,
41
+ category_id=int(category_id),
42
+ score=score,
43
+ category_name=category_name,
44
+ )
45
+ object_prediction_list.append(object_prediction)
46
+
47
+ image = read_image(image)
48
+ output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
49
+ return output_image['image']
50
+
51
+
52
+ inputs = [
53
+ gr.inputs.Image(type="filepath", label="Input Image"),
54
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
55
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
56
+ ]
57
+
58
+ outputs = gr.outputs.Image(type="filepath", label="Output Image")
59
+ title = "Naruto Hand Seal Detection with YOLOv8"
60
+
61
+ gr.Interface(
62
+ fn=yolov8_inference,
63
+ inputs=inputs,
64
+ outputs=outputs,
65
+ title=title,
66
+ theme='huggingface',
67
+ ).launch(debug=True).queue()