eeshawn commited on
Commit
028df33
·
1 Parent(s): d784ede

update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -46
app.py CHANGED
@@ -1,18 +1,16 @@
1
  import gradio as gr
2
  import torch
3
  from ultralyticsplus import YOLO, render_result
4
- from ultralytics.yolo.utils.plotting import Annotator
5
 
6
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
7
- model = YOLO('eeshawn11/naruto_hand_seal_detection')
8
- model.conf = 0.50
9
- model.iou = 0.45
10
- model.overrides['max_det'] = 1
11
- model.to(device)
12
 
13
  def yolov8_inference(
14
  image: gr.Image = None,
15
- model = model,
16
  conf_threshold: gr.Slider = 0.50,
17
  iou_threshold: gr.Slider = 0.45,
18
  ):
@@ -26,49 +24,12 @@ def yolov8_inference(
26
  Returns:
27
  Rendered image
28
  """
29
- # model = YOLO(model_path)
30
- # model.conf = conf_threshold
31
- # model.iou = iou_threshold
32
- # model.overrides['max_det'] = 1
33
- # results = model.predict(image, return_outputs=True)
34
- results = model.predict(image)
35
- print(results[0].boxes)
36
- # object_prediction_list = []
37
- # annotator = Annotator(image)
38
- # for _, image_results in enumerate(results):
39
- # if len(image_results)!=0:
40
- # image_predictions_in_xyxy_format = image_results['det']
41
- # for pred in image_predictions_in_xyxy_format:
42
- # x1, y1, x2, y2 = (
43
- # int(pred[0]),
44
- # int(pred[1]),
45
- # int(pred[2]),
46
- # int(pred[3]),
47
- # )
48
- # bbox = [x1, y1, x2, y2]
49
- # score = pred[4]
50
- # category_name = model.model.names[int(pred[5])]
51
- # category_id = pred[5]
52
- # annotator.box_label(bbox, f"{category_name} {score}")
53
- # object_prediction = ObjectPrediction(
54
- # bbox=bbox,
55
- # category_id=int(category_id),
56
- # score=score,
57
- # category_name=category_name,
58
- # )
59
- # object_prediction_list.append(object_prediction)
60
-
61
- # image = read_image(image)
62
- # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
63
-
64
- # return output_image['image']
65
- # return annotator.result()
66
- render = render_result(model=model, image=image, result=results[0])
67
  return render
68
 
69
 
70
  inputs = [
71
- # gr.inputs.Image(type="filepath", label="Input Image"),
72
  gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
73
  gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
74
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
 
1
  import gradio as gr
2
  import torch
3
  from ultralyticsplus import YOLO, render_result
 
4
 
5
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
6
+ yolo_model = YOLO('eeshawn11/naruto_hand_seal_detection')
7
+ yolo_model.conf = 0.50
8
+ yolo_model.iou = 0.45
9
+ yolo_model.overrides['max_det'] = 1
10
+ yolo_model.to(device)
11
 
12
  def yolov8_inference(
13
  image: gr.Image = None,
 
14
  conf_threshold: gr.Slider = 0.50,
15
  iou_threshold: gr.Slider = 0.45,
16
  ):
 
24
  Returns:
25
  Rendered image
26
  """
27
+ results = yolo_model.predict(image)
28
+ render = render_result(model=yolo_model, image=image, result=results[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  return render
30
 
31
 
32
  inputs = [
 
33
  gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
34
  gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
35
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),