Spaces:
Runtime error
Runtime error
eeshawn
commited on
Commit
·
028df33
1
Parent(s):
d784ede
update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from ultralyticsplus import YOLO, render_result
|
4 |
-
from ultralytics.yolo.utils.plotting import Annotator
|
5 |
|
6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
def yolov8_inference(
|
14 |
image: gr.Image = None,
|
15 |
-
model = model,
|
16 |
conf_threshold: gr.Slider = 0.50,
|
17 |
iou_threshold: gr.Slider = 0.45,
|
18 |
):
|
@@ -26,49 +24,12 @@ def yolov8_inference(
|
|
26 |
Returns:
|
27 |
Rendered image
|
28 |
"""
|
29 |
-
|
30 |
-
|
31 |
-
# model.iou = iou_threshold
|
32 |
-
# model.overrides['max_det'] = 1
|
33 |
-
# results = model.predict(image, return_outputs=True)
|
34 |
-
results = model.predict(image)
|
35 |
-
print(results[0].boxes)
|
36 |
-
# object_prediction_list = []
|
37 |
-
# annotator = Annotator(image)
|
38 |
-
# for _, image_results in enumerate(results):
|
39 |
-
# if len(image_results)!=0:
|
40 |
-
# image_predictions_in_xyxy_format = image_results['det']
|
41 |
-
# for pred in image_predictions_in_xyxy_format:
|
42 |
-
# x1, y1, x2, y2 = (
|
43 |
-
# int(pred[0]),
|
44 |
-
# int(pred[1]),
|
45 |
-
# int(pred[2]),
|
46 |
-
# int(pred[3]),
|
47 |
-
# )
|
48 |
-
# bbox = [x1, y1, x2, y2]
|
49 |
-
# score = pred[4]
|
50 |
-
# category_name = model.model.names[int(pred[5])]
|
51 |
-
# category_id = pred[5]
|
52 |
-
# annotator.box_label(bbox, f"{category_name} {score}")
|
53 |
-
# object_prediction = ObjectPrediction(
|
54 |
-
# bbox=bbox,
|
55 |
-
# category_id=int(category_id),
|
56 |
-
# score=score,
|
57 |
-
# category_name=category_name,
|
58 |
-
# )
|
59 |
-
# object_prediction_list.append(object_prediction)
|
60 |
-
|
61 |
-
# image = read_image(image)
|
62 |
-
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
63 |
-
|
64 |
-
# return output_image['image']
|
65 |
-
# return annotator.result()
|
66 |
-
render = render_result(model=model, image=image, result=results[0])
|
67 |
return render
|
68 |
|
69 |
|
70 |
inputs = [
|
71 |
-
# gr.inputs.Image(type="filepath", label="Input Image"),
|
72 |
gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
|
73 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
|
74 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from ultralyticsplus import YOLO, render_result
|
|
|
4 |
|
5 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
6 |
+
yolo_model = YOLO('eeshawn11/naruto_hand_seal_detection')
|
7 |
+
yolo_model.conf = 0.50
|
8 |
+
yolo_model.iou = 0.45
|
9 |
+
yolo_model.overrides['max_det'] = 1
|
10 |
+
yolo_model.to(device)
|
11 |
|
12 |
def yolov8_inference(
|
13 |
image: gr.Image = None,
|
|
|
14 |
conf_threshold: gr.Slider = 0.50,
|
15 |
iou_threshold: gr.Slider = 0.45,
|
16 |
):
|
|
|
24 |
Returns:
|
25 |
Rendered image
|
26 |
"""
|
27 |
+
results = yolo_model.predict(image)
|
28 |
+
render = render_result(model=yolo_model, image=image, result=results[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return render
|
30 |
|
31 |
|
32 |
inputs = [
|
|
|
33 |
gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
|
34 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
|
35 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|