Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
eduagarcia
commited on
Commit
·
1841941
1
Parent(s):
a6f1b1f
Transfer main configs to ENV variables
Browse files- README.md +2 -1
- src/envs.py +11 -9
README.md
CHANGED
@@ -14,7 +14,8 @@ space_ci: # See https://huggingface.co/spaces/Wauplin/gradio-space-ci
|
|
14 |
private: true
|
15 |
secrets:
|
16 |
- HF_TOKEN
|
17 |
-
-
|
|
|
18 |
---
|
19 |
|
20 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
14 |
private: true
|
15 |
secrets:
|
16 |
- HF_TOKEN
|
17 |
+
- IS_PUBLIC
|
18 |
+
- HAS_HIGHER_RATE_LIMIT
|
19 |
---
|
20 |
|
21 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
src/envs.py
CHANGED
@@ -5,13 +5,15 @@ from huggingface_hub import HfApi
|
|
5 |
# clone / pull the lmeh eval data
|
6 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
7 |
|
8 |
-
REPO_ID = "HuggingFaceH4/open_llm_leaderboard"
|
9 |
-
QUEUE_REPO = "open-llm-leaderboard/requests"
|
10 |
DYNAMIC_INFO_REPO = "open-llm-leaderboard/dynamic_model_information"
|
11 |
-
RESULTS_REPO = "open-llm-leaderboard/results"
|
12 |
|
13 |
-
PRIVATE_QUEUE_REPO =
|
14 |
-
PRIVATE_RESULTS_REPO =
|
|
|
|
|
15 |
|
16 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
17 |
|
@@ -25,11 +27,11 @@ DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
|
|
25 |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
26 |
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
27 |
|
28 |
-
PATH_TO_COLLECTION = "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03"
|
29 |
|
30 |
# Rate limit variables
|
31 |
-
RATE_LIMIT_PERIOD = 7
|
32 |
-
RATE_LIMIT_QUOTA = 5
|
33 |
-
HAS_HIGHER_RATE_LIMIT =
|
34 |
|
35 |
API = HfApi(token=H4_TOKEN)
|
|
|
5 |
# clone / pull the lmeh eval data
|
6 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
7 |
|
8 |
+
REPO_ID = os.getenv("REPO_ID", "HuggingFaceH4/open_llm_leaderboard")
|
9 |
+
QUEUE_REPO = os.getenv("QUEUE_REPO", "open-llm-leaderboard/requests")
|
10 |
DYNAMIC_INFO_REPO = "open-llm-leaderboard/dynamic_model_information"
|
11 |
+
RESULTS_REPO = os.getenv("RESULTS_REPO", "open-llm-leaderboard/results")
|
12 |
|
13 |
+
PRIVATE_QUEUE_REPO = QUEUE_REPO
|
14 |
+
PRIVATE_RESULTS_REPO = RESULTS_REPO
|
15 |
+
#PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
|
16 |
+
#PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
17 |
|
18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
19 |
|
|
|
27 |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
28 |
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
29 |
|
30 |
+
PATH_TO_COLLECTION = os.getenv("PATH_TO_COLLECTION", "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03")
|
31 |
|
32 |
# Rate limit variables
|
33 |
+
RATE_LIMIT_PERIOD = int(os.getenv("RATE_LIMIT_PERIOD", 7))
|
34 |
+
RATE_LIMIT_QUOTA = int(os.getenv("RATE_LIMIT_QUOTA", 5))
|
35 |
+
HAS_HIGHER_RATE_LIMIT = os.environ.get("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',')
|
36 |
|
37 |
API = HfApi(token=H4_TOKEN)
|