eduagarcia commited on
Commit
1253c3b
Β·
1 Parent(s): 8df1d5c

TRUST_REMOTE_CODE env variable

Browse files
src/display/about.py CHANGED
@@ -1,6 +1,6 @@
1
  from src.display.utils import ModelType
2
  from src.display.utils import Tasks
3
- from src.envs import REPO_ID, QUEUE_REPO, RESULTS_REPO, PATH_TO_COLLECTION, LEADERBOARD_NAME
4
 
5
  LM_EVAL_URL = "https://github.com/eduagarcia/lm-evaluation-harness-pt"
6
 
@@ -81,6 +81,10 @@ To get more information about quantization, see:
81
  - [Collection of best models](https://huggingface.co/collections/{PATH_TO_COLLECTION})
82
  """
83
 
 
 
 
 
84
  FAQ_TEXT = f"""
85
  ---------------------------
86
  # FAQ
@@ -88,7 +92,7 @@ Below are some common questions - if this FAQ does not answer you, feel free to
88
 
89
  ## 1) Submitting a model
90
  My model requires `trust_remote_code=True`, can I submit it?
91
- - *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission, as we don't want to run possibly unsage code on our cluster.*
92
 
93
  What about models of type X?
94
  - *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission.*
@@ -132,6 +136,7 @@ I have an issue about accessing the leaderboard through the Gradio API
132
  - *Since this is not the recommended way to access the leaderboard, we won't provide support for this, but you can look at tools provided by the community for inspiration!*
133
  """
134
 
 
135
 
136
  EVALUATION_QUEUE_TEXT = f"""
137
  # Evaluation Queue for the πŸš€ {LEADERBOARD_NAME}
@@ -149,8 +154,8 @@ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
149
  ```
150
  If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
151
 
152
- Note: make sure your model is public!
153
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
154
 
155
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
156
  It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
 
1
  from src.display.utils import ModelType
2
  from src.display.utils import Tasks
3
+ from src.envs import REPO_ID, QUEUE_REPO, RESULTS_REPO, PATH_TO_COLLECTION, LEADERBOARD_NAME, TRUST_REMOTE_CODE
4
 
5
  LM_EVAL_URL = "https://github.com/eduagarcia/lm-evaluation-harness-pt"
6
 
 
81
  - [Collection of best models](https://huggingface.co/collections/{PATH_TO_COLLECTION})
82
  """
83
 
84
+ REMOTE_CODE_EXAPLANATION = f"- *Yes.*"
85
+ if not TRUST_REMOTE_CODE:
86
+ REMOTE_CODE_EXAPLANATION = f"- *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission, as we don't want to run possibly unsage code on our cluster.*"
87
+
88
  FAQ_TEXT = f"""
89
  ---------------------------
90
  # FAQ
 
92
 
93
  ## 1) Submitting a model
94
  My model requires `trust_remote_code=True`, can I submit it?
95
+ {REMOTE_CODE_EXAPLANATION}
96
 
97
  What about models of type X?
98
  - *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission.*
 
136
  - *Since this is not the recommended way to access the leaderboard, we won't provide support for this, but you can look at tools provided by the community for inspiration!*
137
  """
138
 
139
+ REMOTE_CODE_NOTE = "Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!"
140
 
141
  EVALUATION_QUEUE_TEXT = f"""
142
  # Evaluation Queue for the πŸš€ {LEADERBOARD_NAME}
 
154
  ```
155
  If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
156
 
157
+ Note: make sure your model is public!
158
+ {REMOTE_CODE_NOTE if not TRUST_REMOTE_CODE else ""}
159
 
160
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
161
  It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
src/envs.py CHANGED
@@ -36,4 +36,6 @@ RATE_LIMIT_PERIOD = int(os.getenv("RATE_LIMIT_PERIOD", 7))
36
  RATE_LIMIT_QUOTA = int(os.getenv("RATE_LIMIT_QUOTA", 5))
37
  HAS_HIGHER_RATE_LIMIT = os.environ.get("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',')
38
 
 
 
39
  API = HfApi(token=H4_TOKEN)
 
36
  RATE_LIMIT_QUOTA = int(os.getenv("RATE_LIMIT_QUOTA", 5))
37
  HAS_HIGHER_RATE_LIMIT = os.environ.get("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',')
38
 
39
+ TRUST_REMOTE_CODE = bool(os.getenv("TRUST_REMOTE_CODE", False))
40
+
41
  API = HfApi(token=H4_TOKEN)
src/submission/check_validity.py CHANGED
@@ -9,7 +9,7 @@ from huggingface_hub import ModelCard
9
  from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
10
  from transformers import AutoConfig, AutoTokenizer
11
 
12
- from src.envs import HAS_HIGHER_RATE_LIMIT
13
 
14
 
15
  # ht to @Wauplin, thank you for the snippet!
@@ -36,7 +36,7 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
36
  return True, ""
37
 
38
 
39
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
40
  try:
41
  config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
42
  if test_tokenizer:
 
9
  from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
10
  from transformers import AutoConfig, AutoTokenizer
11
 
12
+ from src.envs import HAS_HIGHER_RATE_LIMIT, TRUST_REMOTE_CODE
13
 
14
 
15
  # ht to @Wauplin, thank you for the snippet!
 
36
  return True, ""
37
 
38
 
39
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=TRUST_REMOTE_CODE, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
40
  try:
41
  config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
42
  if test_tokenizer: